83 research outputs found

    A bug’s life: Delving into the challenges of helminth microbiome studies

    Get PDF
    The body of vertebrates is inhabited by trillions of microorganisms, i.e. viruses, archaea, bacteria and unicellular eukaryotes, together referred to as the ‘microbiota’. Similarly, vertebrates also host a plethora of parasitic worms (the ‘macrobiota’), some of which share their environment with the microbiota inhabiting the gastrointestinal tract [1]. Complex interactions between the helminths and the gut microbiota have been associated with establishment of parasite infection, disease manifestations, and host immune-modulation [2, 3]. Remarkably, not only enteric helminths alter the 26 gut microbiome composition [4], but also the infection with blood flukes of the genus Schistosoma has been associated to intestinal dysbiosis even before the onset of egg laying [5, 6]. Comparably, over the last decade, evidence has emerged of the contribution(s) of the resident microbiota to several physiological and reproductive processes of invertebrate hosts, including insects, arachnids, worms and snails [7, 8]. These noteworthy discoveries, coupled with 30 the recent expansion of high-throughput microbiota- and microbiome-profiling approaches (the former referring to a community of microorganisms themselves, and the latter to the microorganisms and their genomes, in a ecological niche), are rapidly leading to a much better understanding of the composition and functions of microbial communities inhabiting parasitic worms of major public health and socio-economic significance. This basic knowledge might expose exploitable vulnerabilities of parasites, paving the way to the development of novel control strategies [9]

    Accuracy of parasitological and immunological tests for the screening of human schistosomiasis in immigrants and refugees from African countries: An approach with Latent Class Analysis

    Get PDF
    BACKGROUND: Schistosomiasis is a neglected infection affecting millions of people, mostly living in sub-Saharan Africa. Morbidity and mortality due to chronic infection are relevant, although schistosomiasis is often clinically silent. Different diagnostic tests have been implemented in order to improve screening and diagnosis, that traditionally rely on parasitological tests with low sensitivity. Aim of this study was to evaluate the accuracy of different tests for the screening of schistosomiasis in African migrants, in a non endemic setting. METHODOLOGY/PRINCIPAL FINDINGS: A retrospective study was conducted on 373 patients screened at the Centre for Tropical Diseases (CTD) in Negrar, Verona, Italy. Biological samples were tested with: stool/urine microscopy, Circulating Cathodic Antigen (CCA) dipstick test, ELISA, Western blot, immune-chromatographic test (ICT). Test accuracy and predictive values of the immunological tests were assessed primarily on the basis of the results of microscopy (primary reference standard): ICT and WB resulted the test with highest sensitivity (94% and 92%, respectively), with a high NPV (98%). CCA showed the highest specificity (93%), but low sensitivity (48%). The analysis was conducted also using a composite reference standard, CRS (patients classified as infected in case of positive microscopy and/or at least 2 concordant positive immunological tests) and Latent Class Analysis (LCA). The latter two models demonstrated excellent agreement (Cohen's kappa: 0.92) for the classification of the results. In fact, they both confirmed ICT as the test with the highest sensitivity (96%) and NPV (97%), moreover PPV was reasonably good (78% and 72% according to CRS and LCA, respectively). ELISA resulted the most specific immunological test (over 99%). The ICT appears to be a suitable screening test, even when used alone. CONCLUSIONS: The rapid test ICT was the most sensitive test, with the potential of being used as a single screening test for African migrants

    A diagnostic study comparing conventional and real-time PCR for Strongyloides stercoralis on urine and on faecal samples

    Get PDF
    Abstract Strongyloides stercoralis is a soil-transmitted helminth with a wide distribution in tropical and subtropical areas. The diagnosis of S. stercoralisinfection can be challenging, due to the low sensitivity of microscopic examination of stool samples and coproculture. In the last decade, different in-house molecular biology techniques for S. stercoralis have been implemented. They demonstrated good accuracy, although sensitivity does not seem sufficiently high yet. Recently, a novel PCR technique has been evaluated for the detection of S. stercoralis DNA in urine. Aim of this work was to compare the sensitivity of the real-time PCR (qPCR) on feces routinely used at the Centre for Tropical Disease (CTD) of Negrar, Verona, Italy, with that of the novel based PCR on urine. As secondary objective, we evaluated a Urine Conditioning Buffer Âź (Zymoresearch) with the aim of improving nucleic acid stability in urine during sample storage/transport at ambient temperatures. Patients attending the CTD and resulting positive at routine screening with serology for S. stercoralis were invited, previous written consent, to supply stool and urine samples for molecular biology. A convenience sample of 30 patients was included. The sensitivity of qPCR on feces resulted 63%, and that of based PCR on urine was 17%. In all the samples treated with the Urine Conditioning Buffer Âź there was no detectable DNA. In conclusion, the sensitivity of the novel technique resulted low, and needs further implementation before being considered as a valid alternative to the validated method

    A comprehensive analysis of the faecal microbiome and metabolome of Strongyloides stercoralis infected volunteers from a non-endemic area.

    Get PDF
    Data from recent studies support the hypothesis that infections by human gastrointestinal (GI) helminths impact, directly and/or indirectly, on the composition of the host gut microbial flora. However, to the best of our knowledge, these studies have been conducted in helminth-endemic areas with multi-helminth infections and/or in volunteers with underlying gut disorders. Therefore, in this study, we explore the impact of natural mono-infections by the human parasite Strongyloides stercoralis on the faecal microbiota and metabolic profiles of a cohort of human volunteers from a non-endemic area of northern Italy (S+), pre- and post-anthelmintic treatment, and compare the findings with data obtained from a cohort of uninfected controls from the same geographical area (S-). Analyses of bacterial 16S rRNA high-throughput sequencing data revealed increased microbial alpha diversity and decreased beta diversity in the faecal microbial profiles of S+ subjects compared to S-. Furthermore, significant differences in the abundance of several bacterial taxa were observed between samples from S+ and S- subjects, and between S+ samples collected pre- and post-anthelmintic treatment. Faecal metabolite analysis detected marked increases in the abundance of selected amino acids in S+ subjects, and of short chain fatty acids in S- subjects. Overall, our work adds valuable knowledge to current understanding of parasite-microbiota associations and will assist future mechanistic studies aimed to unravel the causality of these relationships

    Author Correction: A comprehensive analysis of the faecal microbiome and metabolome of Strongyloides stercoralis infected volunteers from a non-endemic area

    Get PDF
    A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper. Erratum for Statistical optimization of light intensity and CO2 concentration for lipid production derived from attached cultivation of green microalga Ettlia sp. [Sci Rep. 2018

    Observing mineral dust in northern Africa, the middle east and Europe: current capabilities and challenges ahead for the development of dust services

    Get PDF
    Mineral dust produced by wind erosion of arid and semi-arid surfaces is a major component of atmospheric aerosol that affects climate, weather, ecosystems, and socio-economic sectors such as human health, transportation, solar energy, and air quality. Understanding these effects and ultimately improving the resilience of affected countries requires a reliable, dense, and diverse set of dust observations, fundamental for the development and the provision of skillful dust forecasts tailored products. The last decade has seen a notable improvement of dust observational capabilities in terms of considered parameters, geographical coverage, and delivery times, as well as of tailored products of interest to both the scientific community and the various end-users. Given this progress, here we review the current state of observational capabilities including in-situ, ground-based and satellite remote sensing observations, in Northern Africa, the Middle East and Europe for the provision of dust information considering the needs of various users. We also critically discuss observational gaps and related unresolved questions while providing suggestions for overcoming the current limitations. Our review aims to be a milestone for discussing dust observational gaps at a global level to address the needs of users, from research communities to nonscientific stakeholders

    The rapid spread of SARS-COV-2 Omicron variant in Italy reflected early through wastewater surveillance

    Get PDF
    The SARS-CoV-2 Omicron variant emerged in South Africa in November 2021, and has later been identified worldwide, raising serious concerns. A real-time RT-PCR assay was designed for the rapid screening of the Omicron variant, targeting characteristic mutations of the spike gene. The assay was used to test 737 sewage samples collected throughout Italy (19/21 Regions) between 11 November and 25 December 2021, with the aim of assessing the spread of the Omicron variant in the country. Positive samples were also tested with a real-time RT-PCR developed by the European Commission, Joint Research Centre (JRC), and through nested RT-PCR followed by Sanger sequencing. Overall, 115 samples tested positive for Omicron SARS-CoV-2 variant. The first occurrence was detected on 7 December, in Veneto, North Italy. Later on, the variant spread extremely fast in three weeks, with prevalence of positive wastewater samples rising from 1.0% (1/104 samples) in the week 5–11 December, to 17.5% (25/143 samples) in the week 12–18, to 65.9% (89/135 samples) in the week 19–25, in line with the increase in cases of infection with the Omicron variant observed during December in Italy. Similarly, the number of Regions/Autonomous Provinces in which the variant was detected increased fromone in the first week, to 11 in the second, and to 17 in the last one. The presence of the Omicron variant was confirmed by the JRC real-time RT-PCR in 79.1% (91/115) of the positive samples, and by Sanger sequencing in 66% (64/97) of PCR amplicons

    Consensus guidelines for the detection of immunogenic cell death

    Get PDF
    none82siApoptotic cells have long been considered as intrinsically tolerogenic or unable to elicit immune responses specific for dead cell-associated antigens. However, multiple stimuli can trigger a functionally peculiar type of apoptotic demise that does not go unnoticed by the adaptive arm of the immune system, which we named "immunogenic cell death" (ICD). ICD is preceded or accompanied by the emission of a series of immunostimulatory damage-associated molecular patterns (DAMPs) in a precise spatiotemporal configuration. Several anticancer agents that have been successfully employed in the clinic for decades, including various chemotherapeutics and radiotherapy, can elicit ICD. Moreover, defects in the components that underlie the capacity of the immune system to perceive cell death as immunogenic negatively influence disease outcome among cancer patients treated with ICD inducers. Thus, ICD has profound clinical and therapeutic implications. Unfortunately, the gold-standard approach to detect ICD relies on vaccination experiments involving immunocompetent murine models and syngeneic cancer cells, an approach that is incompatible with large screening campaigns. Here, we outline strategies conceived to detect surrogate markers of ICD in vitro and to screen large chemical libraries for putative ICD inducers, based on a high-content, high-throughput platform that we recently developed. Such a platform allows for the detection of multiple DAMPs, like cell surface-exposed calreticulin, extracellular ATP and high mobility group box 1 (HMGB1), and/or the processes that underlie their emission, such as endoplasmic reticulum stress, autophagy and necrotic plasma membrane permeabilization. We surmise that this technology will facilitate the development of next-generation anticancer regimens, which kill malignant cells and simultaneously convert them into a cancer-specific therapeutic vaccine.Kepp, Oliver; Senovilla, Laura; Vitale, Ilio; Vacchelli, Erika; Adjemian, Sandy; Agostinis, Patrizia; Apetoh, Lionel; Aranda, Fernando; Barnaba, Vincenzo; Bloy, Norma; Bracci, Laura; Breckpot, Karine; Brough, David; BuquĂ©, Aitziber; Castro, Maria G; Cirone, Mara; Colombo, Maria I; Cremer, Isabelle; Demaria, Sandra; Dini, Luciana; Eliopoulos, Aristides G; Faggioni, Alberto; Formenti, Silvia C; FučíkovĂĄ, Jitka; Gabriele, Lucia; Gaipl, Udo S; Galon, JĂ©rĂŽme; Garg, Abhishek; Ghiringhelli, François; Giese, Nathalia A; Guo, Zong Sheng; Hemminki, Akseli; Herrmann, Martin; Hodge, James W; Holdenrieder, Stefan; Honeychurch, Jamie; Hu, Hong-Min; Huang, Xing; Illidge, Tim M; Kono, Koji; Korbelik, Mladen; Krysko, Dmitri V; Loi, Sherene; Lowenstein, Pedro R; Lugli, Enrico; Ma, Yuting; Madeo, Frank; Manfredi, Angelo A; Martins, Isabelle; Mavilio, Domenico; Menger, Laurie; Merendino, NicolĂČ; Michaud, Michael; Mignot, Gregoire; Mossman, Karen L; Multhoff, Gabriele; Oehler, Rudolf; Palombo, Fabio; Panaretakis, Theocharis; Pol, Jonathan; Proietti, Enrico; Ricci, Jean-Ehrland; Riganti, Chiara; Rovere-Querini, Patrizia; Rubartelli, Anna; Sistigu, Antonella; Smyth, Mark J; Sonnemann, Juergen; Spisek, Radek; Stagg, John; Sukkurwala, Abdul Qader; Tartour, Eric; Thorburn, Andrew; Thorne, Stephen H; Vandenabeele, Peter; Velotti, Francesca; Workenhe, Samuel T; Yang, Haining; Zong, Wei-Xing; Zitvogel, Laurence; Kroemer, Guido; Galluzzi, LorenzoKepp, Oliver; Senovilla, Laura; Vitale, Ilio; Vacchelli, Erika; Adjemian, Sandy; Agostinis, Patrizia; Apetoh, Lionel; Aranda, Fernando; Barnaba, Vincenzo; Bloy, Norma; Bracci, Laura; Breckpot, Karine; Brough, David; BuquĂ©, Aitziber; Castro, Maria G; Cirone, Mara; Colombo, Maria I; Cremer, Isabelle; Demaria, Sandra; Dini, Luciana; Eliopoulos, Aristides G; Faggioni, Alberto; Formenti, Silvia C; FučíkovĂĄ, Jitka; Gabriele, Lucia; Gaipl, Udo S; Galon, JĂ©rĂŽme; Garg, Abhishek; Ghiringhelli, François; Giese, Nathalia A; Guo, Zong Sheng; Hemminki, Akseli; Herrmann, Martin; Hodge, James W; Holdenrieder, Stefan; Honeychurch, Jamie; Hu, Hong Min; Huang, Xing; Illidge, Tim M; Kono, Koji; Korbelik, Mladen; Krysko, Dmitri V; Loi, Sherene; Lowenstein, Pedro R; Lugli, Enrico; Ma, Yuting; Madeo, Frank; Manfredi, Angelo A; Martins, Isabelle; Mavilio, Domenico; Menger, Laurie; Merendino, NicolĂČ; Michaud, Michael; Mignot, Gregoire; Mossman, Karen L; Multhoff, Gabriele; Oehler, Rudolf; Palombo, Fabio; Panaretakis, Theocharis; Pol, Jonathan; Proietti, Enrico; Ricci, Jean Ehrland; Riganti, Chiara; Rovere Querini, Patrizia; Rubartelli, Anna; Sistigu, Antonella; Smyth, Mark J; Sonnemann, Juergen; Spisek, Radek; Stagg, John; Sukkurwala, Abdul Qader; Tartour, Eric; Thorburn, Andrew; Thorne, Stephen H; Vandenabeele, Peter; Velotti, Francesca; Workenhe, Samuel T; Yang, Haining; Zong, Wei Xing; Zitvogel, Laurence; Kroemer, Guido; Galluzzi, Lorenz

    The rapid spread of SARS-COV-2 Omicron variant in Italy reflected early through wastewater surveillance

    Get PDF
    The SARS-CoV-2 Omicron variant emerged in South Africa in November 2021, and has later been identified worldwide, raising serious concerns. A real-time RT-PCR assay was designed for the rapid screening of the Omicron variant, targeting characteristic mutations of the spike gene. The assay was used to test 737 sewage samples collected throughout Italy (19/21 Regions) between 11 November and 25 December 2021, with the aim of assessing the spread of the Omicron variant in the country. Positive samples were also tested with a real-time RT-PCR developed by the European Commission, Joint Research Centre (JRC), and through nested RT-PCR followed by Sanger sequencing. Overall, 115 samples tested positive for Omicron SARS-CoV-2 variant. The first occurrence was detected on 7 December, in Veneto, North Italy. Later on, the variant spread extremely fast in three weeks, with prevalence of positive wastewater samples rising from 1.0% (1/104 samples) in the week 5-11 December, to 17.5% (25/143 samples) in the week 12-18, to 65.9% (89/135 samples) in the week 19-25, in line with the increase in cases of infection with the Omicron variant observed during December in Italy. Similarly, the number of Regions/Autonomous Provinces in which the variant was detected increased from one in the first week, to 11 in the second, and to 17 in the last one. The presence of the Omicron variant was confirmed by the JRC real-time RT-PCR in 79.1% (91/115) of the positive samples, and by Sanger sequencing in 66% (64/97) of PCR amplicons. In conclusion, we designed an RT-qPCR assay capable to detect the Omicron variant, which can be successfully used for the purpose of wastewater-based epidemiology. We also described the history of the introduction and diffusion of the Omicron variant in the Italian population and territory, confirming the effectiveness of sewage monitoring as a powerful surveillance tool
    • 

    corecore