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The body of vertebrates is inhabited by trillions of microorganisms, i.e., viruses, archaea, bacte-

ria, and unicellular eukaryotes, together referred to as the “microbiota.” Similarly, vertebrates

also host a plethora of parasitic worms (the “macrobiota”), some of which share their environ-

ment with the microbiota inhabiting the gastrointestinal (GI) tract [1]. Complex interactions

between the helminths and the gut microbiota have been associated with establishment of par-

asite infection, disease manifestations, and host immune-modulation [2, 3]. Remarkably, not

only GI helminths alter the gut microbiome composition [4], but also the infections with

blood flukes of the genus Schistosoma have been associated with intestinal dysbiosis, that even

occurs before the onset of egg laying [5, 6]. Comparably, over the last decade, evidence has

emerged of the contribution(s) of the resident microbiota to several physiological and repro-

ductive processes of invertebrate hosts, including insects, arachnids, worms, and snails [7, 8].

These noteworthy discoveries, coupled with the recent expansion of high-throughput micro-

biota- and microbiome-profiling approaches (the former referring to the community of micro-

organisms themselves and the latter to the microorganisms and their genomes, within a given

ecological niche), are rapidly leading to a much better understanding of the composition and

functions of microbial communities inhabiting parasitic worms of major public health and

socioeconomic significance. This basic knowledge might expose exploitable vulnerabilities of

parasites, thus paving the way to the development of novel control strategies [9].

In this Viewpoint, we consider the challenges associated with the study of the helminth

microbiota/-me, spanning not only bacteria transiently associated with parasites in which the

life cycle includes free-living and parasitic stages, but also putative helminth endosymbionts.

Indeed, endosymbionts have been described in both roundworms and flatworms [10, 11]. In

nematodes, the most notable example of a mutualistic relationship between worms and bacte-

ria is represented by filarial parasites [12], i.e., Onchocerca volvulus, Wuchereria bancrofti, and

Brugia malayi, agents of human lymphatic filariasis. In particular, the fitness, propagation, and

survival of these worms depend on endosymbiotic bacteria of the genus Wolbachia that have

thus become the target of intense research aimed to develop novel filaricidal compounds [11,

13]. On the other hand, bacteria of the genus Neorickettsia have been identified in the endopar-

asitic digeneans, i.e., trematodes [10]. These intracellular bacteria inhabit the worm reproduc-

tive tissues and are vertically-transmitted to the next generation of parasites via the eggs [10].

In addition, horizontal transmission of Neorickettsia from the fluke to the fluke-infected verte-

brate host, where the bacteria colonize macrophages among other cell types, is a determinant
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for the pathogenesis of severe disease in, for example, horses, dogs, and humans [14]. Recently,

we have sequenced and characterized the whole genome of a Neorickettsia endobacterium in

an isolate of adult Fasciola hepatica liver flukes [15]. The Neorickettsia, related to the etiological

agents of human Sennetsu and Potomac horse fevers, was localized in the gonads of the liver

fluke and its DNA detected by PCR in eggs, thus supporting a germline transmission [15].

To decipher the role of parasite-associated microbiota on the pathophysiology of helminthi-

ases, the Parasite Microbiome Project (PMP) was launched in January 2019 [9]. Importantly,

the PMP encourages best practices for experimental designs to ensure robust and reliable com-

parisons between datasets and promotes the inclusion of appropriate controls to correctly

identify environmental microbial contaminants [9]. These practices are particularly important

in experiments in which microbiota profiling is conducted using next generation sequencing

(NGS) (i.e., high-throughput) technologies that are particularly prone to exogenous bacterial

contamination, such as bacterial 16S rRNA-amplicon sequencing on low-biomass samples,

e.g., helminths [16, 17]. Therefore, given the potential confounders in helminth-associated

microbiome studies, we propose that four elements, outlined below, must be considered in

order to generate reliable and reproducible data (Fig 1).

1: Appropriate controls

The identification and characterization of the helminth-associated microbiota/-me includes

several experimental steps from sample collection to library preparation and sequencing, each

of which is exposed to different sources of contamination. Therefore, the inclusion of match-

ing negative controls (“blanks”) in each step of the experiment is critical. The sample collection

should ideally be carried out under clean conditions by using disposable sterile consumables

and autoclaved instruments to minimize the risk of sample contamination with environmental

bacteria. In addition, controls for each tentative source of environmental contaminants should

be included. Following thorough screening, the sequence data generated from these negative

controls from each experimental step can be subtracted from the datasets under consideration.

2: Microscopical visualisation of helminth-associated bacteria

Following in silico subtraction of putative contaminant sequences, unequivocal identification

and characterization of worm microbiomes can rely on microscopical techniques aimed to

localize bacteria of interest across different helminth tissues and developmental stages. Widely

used approaches to localize specific groups of microorganisms are based on fluorochromes

conjugated to either antibodies or nuclei acid probes that bind to specific bacterial proteins or

nuclei acids, respectively. Neorickettsia bacteria were identified within the reproductive tissue

of the liver fluke F. hepatica via fluorescent immunohistochemistry [15], whereas a recent

report characterized the “core microbiome” associated with the ovine GI nematode Hae-
monchus contortus using fluorescence in situ hybridization and light and transmission electron

microscopy [18].

3: “Core microbiome” versus transiently associated bacteria

The localization of microorganisms in helminth tissues is a robust indication of the occurrence

of a worm microbiome, and may provide clues on its function(s); for instance, Wolbachia
localized in the reproductive tissues of filarial parasites have been shown to be involved in sex-

ual differentiation [19] and worm survival [20]. However, the distinction between bacteria that

might be transiently associated with the parasite, e.g., coating the surface of free-living larval

stages or transported within the alimentary tract of the parasite among different host niches,

and those that might belong to the worm “core microbiome” is crucial.
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Protocols to eliminate bacteria contaminating the external tegument of GI worms have

been implemented. Treatment of Trichuris muris worms with sodium hypochlorite allowed

the identification of a specific parasite intestinal microbiota distinct from that of its host [2].

Whether transiently associated bacteria have direct effects on parasite biology still needs to be

Fig 1. Key elements for a reliable and reproducible characterization of the helminth-associated microbiome. NGS; next generation sequencing.

https://doi.org/10.1371/journal.pntd.0008446.g001
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ascertained; notwithstanding, they might contribute to the pathophysiology of the infection

and comorbidity in the host. The Asian liver fluke Opisthorchis viverrini provides a signal

example in this regard; accumulating evidence suggests that the juvenile form of the parasite

excysted in the duodenum of the human host might ingest Helicobacter pylori and/or related

species of bacteria and transport the bacillus to the bile duct, where this fluke establishes [21,

22]. Chronic infection with either H. pylori bacteria or O. viverrini is classified by the Interna-

tional Agency for Research on Cancer as a Group 1 carcinogen, leading to gastric adenocarci-

noma or cholangiocarcinoma (CCA), respectively [23]. We have previously reported a

synergistic association between the liver fluke and Helicobacter bacteria in the development of

the opisthorchiasis-associated CCA [21], which may result from an eventual horizontal trans-

mission of bacteria from the parasite to host tissue. On the other hand, a worm “core micro-

biome” (particularly, if associated with the parasite gonads) may be vertically-transmitted to

the next generation and, hence, detected across different developmental stages. Therefore,

screening for the presence of bacteria in different developmental stages of the parasite, either

by PCR, qPCR, and/or 16S-rRNA amplicon NGS [15, 18] is recommended to define the “core

microbiome” that might serve as a foundation to explore novel strategies for transmission con-

trol. In addition to bacteria, the “core microbiome” may comprise microeukaryotes, such as

fungi and protozoa, and viruses that can be detected by shotgun metagenomic approaches [9].

Although these methods are not inexpensive and generate complex data (which require

advanced bioinformatics analyses that include the identification and in silico subtraction of

helminth-derived sequences), their application is recommended to gain an overall picture of

the helminth microbiome and enable the prediction of bacterial metabolic pathways that

might be essential for worm biology and (patho)physiology associated with the infection [24].

Subsequently, the use of functional approaches to investigate the roles of this “core micro-

biome” in worm biology, helminth infection, establishment, and host–parasite interactions

becomes critical.

4: Functional studies of the helminth-associated microbiome

The follow-on step after the identification of both transiently associated bacteria and the worm

“core microbiome” is to understand the biological relevance of these interactions. The use of

broad- or narrow-spectrum antibiotics to alter the worm microbiome might assist the determi-

nation of the essentiality of these bacteria for worm survival, fitness, and/or reproduction [25].

In addition, optimization of protocols for in vitro and ex vivo culturing of parasitic develop-

mental stages [26–28], and the use of organoids to simulate interactions between parasites,

host cells, and selected bacteria [29], in tandem with functional genomic tools currently under

development for helminths (e.g., genome editing [30–32]) and bacteria [33] will assist the set-

up of controlled experiments to address hypotheses on mechanisms underlying worm-

microbes interactions. Similar approaches have been employed for model organisms such as

Caenorhabditis elegans. The C. elegans–associated microbiome has been analyzed in laboratory

settings by culturing worms on individual bacterial strains and evaluating helminth growth

rate and responses of stress and immune related genes. The majority of the bacterial strains

investigated were found to be beneficial for worm fitness [34]. Finally, where feasible, in vivo
studies using rodent models of helminth infection might provide invaluable functional insights

on transmission of bacteria across parasitic developmental stages, microbial horizontal trans-

location to host tissues, and bacteria-mediated pathologies associated with helminthiases.

Germ-free and gnotobiotic mice (i.e., animals exclusively colonised by known microbes) are

extensively used in microbiome studies [35]. However, the dysfunctional immune response of

these animals might add several confounders to the infection model. On the other hand, the
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use of antibiotics in well-established murine models of helminthiases might allow to target spe-

cific groups of host- and/or worm-associated bacteria.

To conclude, similarly to the human microbiome, bacteria associated with helminth para-

sites likely represent an intrinsic part of these organisms, so much so that parasite biology

might not be completely understood in its absence. However, the characterization of the genu-

ine helminth microbiome may turn out to be complex, or even daunting, due to several techni-

cal challenges. In our view, rigorous hygiene to exclude or at least minimize contaminants,

together with bacterial localization in helminth tissues and across developmental stages, and

their functional characterization are essential steps to unequivocally identify bacteria associ-

ated with parasitic worms and ascertain their roles in the dynamic crosstalk among the para-

site, the host, and the host microbiome. Ultimately, this will contribute to the current

incomplete understanding of the biology and pathogenicity of helminths.
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