14 research outputs found

    Dynamical Boson Stars

    Full text link
    The idea of stable, localized bundles of energy has strong appeal as a model for particles. In the 1950s John Wheeler envisioned such bundles as smooth configurations of electromagnetic energy that he called {\em geons}, but none were found. Instead, particle-like solutions were found in the late 1960s with the addition of a scalar field, and these were given the name {\em boson stars}. Since then, boson stars find use in a wide variety of models as sources of dark matter, as black hole mimickers, in simple models of binary systems, and as a tool in finding black holes in higher dimensions with only a single killing vector. We discuss important varieties of boson stars, their dynamic properties, and some of their uses, concentrating on recent efforts.Comment: 79 pages, 25 figures, invited review for Living Reviews in Relativity; major revision in 201

    Precise measurement of the W-boson mass with the CDF II detector

    Get PDF
    We have measured the W-boson mass MW using data corresponding to 2.2/fb of integrated luminosity collected in proton-antiproton collisions at 1.96 TeV with the CDF II detector at the Fermilab Tevatron collider. Samples consisting of 470126 W->enu candidates and 624708 W->munu candidates yield the measurement MW = 80387 +- 12 (stat) +- 15 (syst) = 80387 +- 19 MeV. This is the most precise measurement of the W-boson mass to date and significantly exceeds the precision of all previous measurements combined

    Measurement of the Top Pair Production Cross Section in the Dilepton Decay Channel in ppbar Collisions at sqrt s = 1.96 TeV

    Get PDF
    Submitted to Phys. Rev. DA measurement of the \ttbar production cross section in \ppbar collisions at s\sqrt{{\rm s}} = 1.96 TeV using events with two leptons, missing transverse energy, and jets is reported. The data were collected with the CDF II Detector. The result in a data sample corresponding to an integrated luminosity 2.8 fb1^{-1} is: \sigma_{\ttbar} = 6.27 ±\pm 0.73(stat) ±\pm 0.63(syst) ±\pm 0.39(lum) pb. for an assumed top mass of 175 GeV/c2c^{2}.A measurement of the tt̅ production cross section in pp̅ collisions at √s=1.96  TeV using events with two leptons, missing transverse energy, and jets is reported. The data were collected with the CDF II detector. The result in a data sample corresponding to an integrated luminosity 2.8  fb-1 is σtt̅ =6.27±0.73(stat)±0.63(syst)±0.39(lum)  pb. for an assumed top mass of 175  GeV/c2.Peer reviewe

    Search for the Higgs boson in the all-hadronic final state using the CDF II detector

    No full text
    We report on a search for the production of the Higgs boson decaying to two bottom quarks accompanied by two additional quarks. The data sample used corresponds to an integrated luminosity of approximately 4 fb(-1) of p (p) over bar collisions at root s = 1.96 TeV recorded by the CDF II experiment. This search includes twice the integrated luminosity of the previous published result, uses analysis techniques to distinguish jets originating from light flavor quarks and those from gluon radiation, and adds sensitivity to a Higgs boson produced by vector boson fusion. We find no evidence of the Higgs boson and place limits on the Higgs boson production cross section for Higgs boson masses between 100 GeV/c(2) and 150 GeV/c(2) at the 95% confidence level. For a Higgs boson mass of 120 GeV/c(2), the observed (expected) limit is 10.5 (20.0) times the predicted standard model cross section

    Search for a Higgs boson in the diphoton final state in pp collisions at sqrt[s]=1.96TeV.

    No full text
    A search for a narrow Higgs boson resonance in the diphoton mass spectrum is presented based on data corresponding to 7.0fb{-1} of integrated luminosity from pp collisions at sqrt[s]=1.96TeV collected by the CDF experiment. No evidence of such a resonance is observed, and upper limits are set on the cross section times branching ratio of the resonant state as a function of Higgs boson mass. The limits are interpreted in the context of the standard model and one fermiophobic benchmark model where the data exclude fermiophobic Higgs bosons with masses below 114GeV/c{2} at a 95% Bayesian credibility level
    corecore