399 research outputs found

    Anticipatory eye movements evoked after active following versus passive observation of a predictable motion stimulus.

    No full text
    We used passive and active following of a predictable smooth pursuit stimulus in order to establish if predictive eye movement responses are equivalent under both passive and active conditions. The smooth pursuit stimulus was presented in pairs that were either ‘predictable’ in which both presentations were matched in timing and velocity, or ‘randomized’ in which each presentation in the pair was varied in both timing and velocity. A visual cue signaled the type of response required from the subject; a green cue indicated the subject should follow both the target presentations (Go-Go), a pink cue indicated that the subject should passively observe the 1st target and follow the 2nd target (NoGo-Go), and finally a green cue with a black cross revealed a randomized (Rnd) trial in which the subject should follow both presentations. The results revealed better prediction in the Go-Go trials than in the NoGo-Go trials, as indicated by higher anticipatory velocity and earlier eye movement onset (latency). We conclude that velocity and timing information stored from passive observation of a moving target is diminished when compared to active following of the target. This study has significant consequences for understanding how visuomotor memory is generated, stored and subsequently released from short-term memory

    The impact of reward and punishment on skill learning depends on task demands

    Get PDF
    Reward and punishment motivate behavior, but it is unclear exactly how they impact skill performance and whether the effect varies across skills. The present study investigated the effect of reward and punishment in both a sequencing skill and a motor skill context. Participants trained on either a sequencing skill (serial reaction time task) or a motor skill (force-tracking task). Skill knowledge was tested immediately after training, and again 1 hour, 24-48 hours, and 30 days after training. We found a dissociation of the effects of reward and punishment on the tasks, primarily reflecting the impact of punishment. While punishment improved serial reaction time task performance, it impaired force-tracking task performance. In contrast to prior literature, neither reward nor punishment benefitted memory retention, arguing against the common assumption that reward ubiquitously benefits skill retention. Collectively, these results suggest that punishment impacts skilled behavior more than reward in a complex, task dependent fashion

    Skill learning strengthens cortical representations of motor sequences.

    Get PDF
    Motor-skill learning can be accompanied by both increases and decreases in brain activity. Increases may indicate neural recruitment, while decreases may imply that a region became unimportant or developed a more efficient representation of the skill. These overlapping mechanisms make interpreting learning-related changes of spatially averaged activity difficult. Here we show that motor-skill acquisition is associated with the emergence of highly distinguishable activity patterns for trained movement sequences, in the absence of average activity increases. During functional magnetic resonance imaging, participants produced either four trained or four untrained finger sequences. Using multivariate pattern analysis, both untrained and trained sequences could be discriminated in primary and secondary motor areas. However, trained sequences were classified more reliably, especially in the supplementary motor area. Our results indicate skill learning leads to the development of specialized neuronal circuits, which allow the execution of fast and accurate sequential movements without average increases in brain activity. DOI:http://dx.doi.org/10.7554/eLife.00801.001

    Gaze fixation improves the stability of expert juggling

    Get PDF
    Novice and expert jugglers employ different visuomotor strategies: whereas novices look at the balls around their zeniths, experts tend to fixate their gaze at a central location within the pattern (so-called gaze-through). A gaze-through strategy may reflect visuomotor parsimony, i.e., the use of simpler visuomotor (oculomotor and/or attentional) strategies as afforded by superior tossing accuracy and error corrections. In addition, the more stable gaze during a gaze-through strategy may result in more accurate movement planning by providing a stable base for gaze-centered neural coding of ball motion and movement plans or for shifts in attention. To determine whether a stable gaze might indeed have such beneficial effects on juggling, we examined juggling variability during 3-ball cascade juggling with and without constrained gaze fixation (at various depths) in expert performers (n = 5). Novice jugglers were included (n = 5) for comparison, even though our predictions pertained specifically to expert juggling. We indeed observed that experts, but not novices, juggled significantly less variable when fixating, compared to unconstrained viewing. Thus, while visuomotor parsimony might still contribute to the emergence of a gaze-through strategy, this study highlights an additional role for improved movement planning. This role may be engendered by gaze-centered coding and/or attentional control mechanisms in the brain

    Motor Adaptation Scaled by the Difficulty of a Secondary Cognitive Task

    Get PDF
    Background: Motor learning requires evaluating performance in previous movements and modifying future movements. The executive system, generally involved in planning and decision-making, could monitor and modify behavior in response to changes in task difficulty or performance. Here we aim to identify the quantitative cognitive contribution to responsive and adaptive control to identify possible overlap between cognitive and motor processes. Methodology/Principal Findings: We developed a dual-task experiment that varied the trial-by-trial difficulty of a secondary cognitive task while participants performed a motor adaptation task. Subjects performed a difficulty-graded semantic categorization task while making reaching movements that were occasionally subjected to force perturbations. We find that motor adaptation was specifically impaired on the most difficult to categorize trials. Conclusions/Significance: We suggest that the degree of decision-level difficulty of a particular categorization differentially burdens the executive system and subsequently results in a proportional degradation of adaptation. Our results suggest

    Differentiating neural systems mediating the acquisition vs. expression of goal-directed and habitual behavioral control

    Get PDF
    Considerable behavioral data indicate that operant actions can become habitual, as demonstrated by insensitivity to changes in the action–outcome contingency and in subjective outcome values. Notably, although several studies have investigated the neural substrates of habits, none has clearly differentiated the areas of the human brain that support habit formation from those that implement habitual control. We scanned participants with functional magnetic resonance imaging as they learned and performed an operant task in which the conditional structure of the environment encouraged either goal-directed encoding of the consequences of actions, or a habit-like mapping of actions to antecedent cues. Participants were also scanned during a subsequent assessment of insensitivity to outcome devaluation. We identified dissociable roles of the cerebellum and ventral striatum, across learning and test performance, in behavioral insensitivity to outcome devaluation. We also showed that the inferior parietal lobule (an area previously implicated in several aspects of goal-directed action selection, including the attribution of intent and awareness of agency) predicted sensitivity to outcome devaluation. Finally, we revealed a potential functional homology between the human subgenual cortex and rodent infralimbic cortex in the implementation of habitual control. In summary, our findings suggested a broad systems division, at the cortical and subcortical levels, between brain areas mediating the encoding and expression of action–outcome and stimulus–response associations
    corecore