575 research outputs found
Reversible melting and equilibrium phase formation of (Bi,Pb)2Sr2Ca2Cu3O10+d
The decomposition and the reformation of the (Bi,Pb)2Sr2Ca2Cu3O10+d
(?Bi,Pb(2223)?) phase have been investigated in-situ by means of
High-Temperature Neutron Diffraction, both in sintered bulk samples and in
Ag-sheathed monofilamentary tapes. Several decomposition experiments were
performed at various temperatures and under various annealing atmospheres,
under flowing gas as well as in sealed tubes, in order to study the appropriate
conditions for Bi,Pb(2223) formation from the melt. The Bi,Pb(2223) phase was
found to melt incongruently into (Ca,Sr)2CuO3, (Sr,Ca)14Cu24O41 and a
Pb,Bi-rich liquid phase. Phase reformation after melting was successfully
obtained both in bulk samples and Ag-sheathed tapes. The possibility of
crystallising the Bi,Pb(2223) phase from the melt was found to be extremely
sensitive to the temperature and strongly dependent on the Pb losses. The study
of the mass losses due to Pb evaporation was complemented by thermogravimetric
analysis which proved that Pb losses are responsible for moving away from
equilibrium and therefore hinder the reformation of the Bi,Pb(2223) phase from
the melt. Thanks to the full pattern profile refinement, a quantitative phase
analysis was carried out as a function of time and temperature and the role of
the secondary phases was investigated. Lattice distortions and/or transitions
were found to occur at high temperature in Bi,Pb(2223), Bi,Pb(2212),
(Ca,Sr)2CuO3 and (Sr,Ca)14Cu24O41, due to cation diffusion and stoichiometry
changes. The results indicate that it is possible to form the Bi,Pb(2223) phase
from a liquid close to equilibrium conditions, like Bi(2212) and Bi(2201), and
open new unexplored perspectives for high-quality Ag-sheathed Bi,Pb(2223) tape
processing.Comment: 45 pages (including references,figures and captions), 13 figures
Submitted to Supercond. Sci. Techno
Deviations from a uniform period spacing of gravity modes in a massive star
The life of a star is dominantly determined by the physical processes in the stellar interior. Unfortunately, we still have a poor understanding of how the stellar gas mixes near the stellar core, preventing precise predictions of stellar evolution. The unknown nature of the mixing processes as well as the extent of the central mixed region is particularly problematic for massive stars. Oscillations in stars with masses a few times that of the Sun offer a unique opportunity to disentangle the nature of various mixing processes, through the distinct signature they leave on period spacings in the gravity mode spectrum. Here we report the detection of numerous gravity modes in a young star with a mass of about seven solar masses. The mean period spacing allows us to estimate the extent of the convective core, and the clear periodic deviation from the mean constrains the location of the chemical transition zone to be at about 10 per cent of the radius and rules out a clear-cut profile.Peer reviewe
The quest for the solar g modes
Solar gravity modes (or g modes) -- oscillations of the solar interior for
which buoyancy acts as the restoring force -- have the potential to provide
unprecedented inference on the structure and dynamics of the solar core,
inference that is not possible with the well observed acoustic modes (or p
modes). The high amplitude of the g-mode eigenfunctions in the core and the
evanesence of the modes in the convection zone make the modes particularly
sensitive to the physical and dynamical conditions in the core. Owing to the
existence of the convection zone, the g modes have very low amplitudes at
photospheric levels, which makes the modes extremely hard to detect. In this
paper, we review the current state of play regarding attempts to detect g
modes. We review the theory of g modes, including theoretical estimation of the
g-mode frequencies, amplitudes and damping rates. Then we go on to discuss the
techniques that have been used to try to detect g modes. We review results in
the literature, and finish by looking to the future, and the potential advances
that can be made -- from both data and data-analysis perspectives -- to give
unambiguous detections of individual g modes. The review ends by concluding
that, at the time of writing, there is indeed a consensus amongst the authors
that there is currently no undisputed detection of solar g modes.Comment: 71 pages, 18 figures, accepted by Astronomy and Astrophysics Revie
Asteroseismology and Interferometry
Asteroseismology provides us with a unique opportunity to improve our
understanding of stellar structure and evolution. Recent developments,
including the first systematic studies of solar-like pulsators, have boosted
the impact of this field of research within Astrophysics and have led to a
significant increase in the size of the research community. In the present
paper we start by reviewing the basic observational and theoretical properties
of classical and solar-like pulsators and present results from some of the most
recent and outstanding studies of these stars. We centre our review on those
classes of pulsators for which interferometric studies are expected to provide
a significant input. We discuss current limitations to asteroseismic studies,
including difficulties in mode identification and in the accurate determination
of global parameters of pulsating stars, and, after a brief review of those
aspects of interferometry that are most relevant in this context, anticipate
how interferometric observations may contribute to overcome these limitations.
Moreover, we present results of recent pilot studies of pulsating stars
involving both asteroseismic and interferometric constraints and look into the
future, summarizing ongoing efforts concerning the development of future
instruments and satellite missions which are expected to have an impact in this
field of research.Comment: Version as published in The Astronomy and Astrophysics Review, Volume
14, Issue 3-4, pp. 217-36
Repeatability of FDG PET/CT metrics assessed in free breathing and deep inspiration breath hold in lung cancer patients
We measured the repeatability of FDG PET/CT uptake metrics when acquiring scans in free breathing (FB) conditions compared with deep inspiration breath hold (DIBH) for locally advanced lung cancer. Twenty patients were enrolled in this prospective study. Two FDG PET/CT scans per patient were conducted few days apart and in two breathing conditions (FB and DIBH). This resulted in four scans per patient. Up to four FDG PET avid lesions per patient were contoured. The following FDG metrics were measured in all lesions and in all four scans: Standardized uptake value (SUV)peak, SUVmax, SUVmean, metabolic tumor volume (MTV) and total lesion glycolysis (TLG), based on an isocontur of 50% of SUVmax. FDG PET avid volumes were delineated by a nuclear medicine physician. The gross tumor volumes (GTV) were contoured on the corresponding CT scans. Nineteen patients were available for analysis. Test-retest standard deviations of FDG uptake metrics in FB and DIBH were: SUVpeak FB/DIBH: 16.2%/16.5%; SUVmax: 18.2%/22.1%; SUVmean: 18.3%/22.1%; TLG: 32.4%/40.5%. DIBH compared to FB resulted in higher values with mean differences in SUVmax of 12.6%, SUVpeak 4.4% and SUVmean 11.9%. MTV, TLG and GTV were all significantly smaller on day 1 in DIBH compared to FB. However, the differences between metrics under FB and DIBH were in all cases smaller than 1 SD of the day to day repeatability. FDG acquisition in DIBH does not have a clinically relevant impact on the uptake metrics and does not improve the test-retest repeatability of FDG uptake metrics in lung cancer patients
A review on substances and processes relevant for optical remote sensing of extremely turbid marine areas, with a focus on the Wadden Sea
The interpretation of optical remote sensing data of estuaries and tidal flat areas is hampered by optical complexity and often extreme turbidity. Extremely high concentrations of suspended matter, chlorophyll and dissolved organic matter, local differences, seasonal and tidal variations and resuspension are important factors influencing the optical properties in such areas. This review gives an overview of the processes in estuaries and tidal flat areas and the implications of these for remote sensing in such areas, using the Wadden Sea as a case study area. Results show that remote sensing research in extremely turbid estuaries and tidal areas is possible. However, this requires sensors with a large ground resolution, algorithms tuned for high concentrations of various substances and the local specific optical properties of these substances, a simultaneous detection of water colour and land-water boundaries, a very short time lag between acquisition of remote sensing and in situ data used for validation and sufficient geophysical and ecological knowledge of the area. © 2010 The Author(s)
QCD and strongly coupled gauge theories : challenges and perspectives
We highlight the progress, current status, and open challenges of QCD-driven physics, in theory and in experiment. We discuss how the strong interaction is intimately connected to a broad sweep of physical problems, in settings ranging from astrophysics and cosmology to strongly coupled, complex systems in particle and condensed-matter physics, as well as to searches for physics beyond the Standard Model. We also discuss how success in describing the strong interaction impacts other fields, and, in turn, how such subjects can impact studies of the strong interaction. In the course of the work we offer a perspective on the many research streams which flow into and out of QCD, as well as a vision for future developments.Peer reviewe
Low oxygen affects photophysiology and the level of expression of two-carbon metabolism genes in the seagrass <i>Zostera muelleri</i>
© 2017, Springer Science+Business Media B.V. Seagrasses are a diverse group of angiosperms that evolved to live in shallow coastal waters, an environment regularly subjected to changes in oxygen, carbon dioxide and irradiance. Zostera muelleri is the dominant species in south-eastern Australia, and is critical for healthy coastal ecosystems. Despite its ecological importance, little is known about the pathways of carbon fixation in Z. muelleri and their regulation in response to environmental changes. In this study, the response of Z. muelleri exposed to control and very low oxygen conditions was investigated by using (i) oxygen microsensors combined with a custom-made flow chamber to measure changes in photosynthesis and respiration, and (ii) reverse transcription quantitative real-time PCR to measure changes in expression levels of key genes involved in C4 metabolism. We found that very low levels of oxygen (i) altered the photophysiology of Z. muelleri, a characteristic of C3 mechanism of carbon assimilation, and (ii) decreased the expression levels of phosphoenolpyruvate carboxylase and carbonic anhydrase. These molecular-physiological results suggest that regulation of the photophysiology of Z. muelleri might involve a close integration between the C3 and C4, or other CO2 concentrating mechanisms metabolic pathways. Overall, this study highlights that the photophysiological response of Z. muelleri to changing oxygen in water is capable of rapid acclimation and the dynamic modulation of pathways should be considered when assessing seagrass primary production
The cystic fibrosis microbiome in an ecological perspective and its impact in antibiotic therapy
The recent focus on the cystic fibrosis (CF) complex microbiome has led to the recognition that the microbes can interact between them and with the host immune system, affecting the disease progression and treatment routes. Although the main focus remains on the interactions between traditional pathogens, growing evidence supports the contribution and the role of emergent species. Understanding the mechanisms and the biological effects involved in polymicrobial interactions may be the key to improve effective therapies and also to define new strategies for disease control. This review focuses on the interactions between microbe-microbe and host-microbe, from an ecological point of view, discussing their impact on CF disease progression. There are increasing indications that these interactions impact the success of antimicrobial therapy. Consequently, a new approach where therapy is personalized to patients by taking into account their individual CF microbiome is suggested.Portuguese Foundation for Science and Technology (FCT), the strategic funding of UID/BIO/04469/2013-CEB and UID/EQU/00511/2013-LEPABE units. This study was also supported by FCT and the European Community fund FEDER, through Program COMPETE, under the scope of the Projects “DNA mimics” PIC/IC/82815/2007, RECI/BBB-EBI/0179/2012 (FCOMP-01-0124-FEDER-027462), “BioHealth—Biotechnology and Bioengineering approaches to improve health quality”, Ref. NORTE-07-0124-FEDER-000027 and NORTE-07-0124-FEDER-000025—RL2_ Environment and Health, co-funded by the Programa Operacional Regional do Norte (ON.2 – O Novo Norte), QREN, FEDER. The authors also acknowledge the grant of Susana P. Lopes (SFRH/BPD/95616/2013) and of the COST-Action TD1004: Theragnostics for imaging and therapy
The ribotoxic stress response drives acute inflammation, cell death, and epidermal thickening in UV-irradiated skin in vivo
\ua9 2024 The Author(s)Solar UVB light causes damage to the outermost layer of skin. This insult induces rapid local responses, such as dermal inflammation, keratinocyte cell death, and epidermal thickening, all of which have traditionally been associated with DNA damage response signaling. Another stress response that is activated by UVB light is the ribotoxic stress response (RSR), which depends on the ribosome-associated mitogen-activated protein 3 kinases (MAP3K) ZAKα and culminates in p38 and JNK activation. Using ZAK knockout mice, we here show that it is the RSR that is responsible for the early manifestation of UVB-induced skin inflammation and keratinocyte death and subsequent proliferation in vivo. We also show that the RSR controls both p38-mediated pyroptotic and JNK-mediated apoptotic programmed cell death of human keratinocytes in vitro. In sum, our work highlights that skin cells rely on a cytoplasmic and ribosomal stress signal rather than a nuclear and DNA-templated signal for rapid inflammatory responses to UV exposure
- …
