4 research outputs found

    TDF and quantitative ultrasound bone quality in African patients on second line ART, ANRS 12169 2LADY sub-study.

    No full text
    Bone demineralization, which leads to osteoporosis and increased fracture risk, is a common metabolic disorder in HIV-infected individuals. In this study, we aimed to assess the change in bone quality using quantitative ultrasound (QUS) over 96 weeks of follow-up after initiation of second-line treatment, and to identify factors associated with change in bone quality.In a randomized trial (ANRS 12169), TDF and PI-naïve participants failing standard first-line treatment, from Burkina Faso, Cameroon, and Senegal were randomized to receive either TDF/FTC/LPVr, ABC/ddI/LPVr or TDF/FTC/DRVr. Their bone quality was assessed using calcaneal QUS at baseline and every 24 weeks until week 96. Stiffness index (SI) was used to measure bone quality. Out of 228 participants, 168 (74%) were women. At baseline, median age was 37 years (IQR: 33-46 years) and median T-CD4 count was 199 cells/μl (IQR: 113-319 cells/μl). The median duration of first-line antiretroviral treatment (ART) was 52 months (IQR: 36-72 months) and the median baseline SI was 101 (IQR: 87-116). In multivariable analysis, factors associated with baseline SI were sex (β = -10.8 [-18.1,-3.5] for women), age (β = -8.7 [-12.4,-5.1] per 10 years), body mass index (BMI) (β = +0.8 [0.1,1.5] per unit of BMI), and study site (β = +12.8 [6.5,19.1] for Cameroon). After 96 weeks of second-line therapy, a reduction of 7.1% in mean SI was observed, as compared with baseline. Factors associated with SI during the follow-up were similar to those found at baseline. Exposure to TDF was not associated with a greater loss of bone quality over time.Bone quality decreased after second-line ART initiation in African patients independently of TDF exposure. Factors associated with bone quality include age, sex, baseline BMI, study site, and duration of follow-up

    Mapping the human genetic architecture of COVID-19

    Get PDF
    The genetic make-up of an individual contributes to the susceptibility and response to viral infection. Although environmental, clinical and social factors have a role in the chance of exposure to SARS-CoV-2 and the severity of COVID-191,2, host genetics may also be important. Identifying host-specific genetic factors may reveal biological mechanisms of therapeutic relevance and clarify causal relationships of modifiable environmental risk factors for SARS-CoV-2 infection and outcomes. We formed a global network of researchers to investigate the role of human genetics in SARS-CoV-2 infection and COVID-19 severity. Here we describe the results of three genome-wide association meta-analyses that consist of up to 49,562 patients with COVID-19 from 46 studies across 19 countries. We report 13 genome-wide significant loci that are associated with SARS-CoV-2 infection or severe manifestations of COVID-19. Several of these loci correspond to previously documented associations to lung or autoimmune and inflammatory diseases3,4,5,6,7. They also represent potentially actionable mechanisms in response to infection. Mendelian randomization analyses support a causal role for smoking and body-mass index for severe COVID-19 although not for type II diabetes. The identification of novel host genetic factors associated with COVID-19 was made possible by the community of human genetics researchers coming together to prioritize the sharing of data, results, resources and analytical frameworks. This working model of international collaboration underscores what is possible for future genetic discoveries in emerging pandemics, or indeed for any complex human disease
    corecore