199 research outputs found

    L-Visibility Drawings of IC-planar Graphs

    Full text link
    An IC-plane graph is a topological graph where every edge is crossed at most once and no two crossed edges share a vertex. We show that every IC-plane graph has a visibility drawing where every vertex is an L-shape, and every edge is either a horizontal or vertical segment. As a byproduct of our drawing technique, we prove that an IC-plane graph has a RAC drawing in quadratic area with at most two bends per edge

    Compact Drawings of 1-Planar Graphs with Right-Angle Crossings and Few Bends

    Full text link
    We study the following classes of beyond-planar graphs: 1-planar, IC-planar, and NIC-planar graphs. These are the graphs that admit a 1-planar, IC-planar, and NIC-planar drawing, respectively. A drawing of a graph is 1-planar if every edge is crossed at most once. A 1-planar drawing is IC-planar if no two pairs of crossing edges share a vertex. A 1-planar drawing is NIC-planar if no two pairs of crossing edges share two vertices. We study the relations of these beyond-planar graph classes (beyond-planar graphs is a collective term for the primary attempts to generalize the planar graphs) to right-angle crossing (RAC) graphs that admit compact drawings on the grid with few bends. We present four drawing algorithms that preserve the given embeddings. First, we show that every nn-vertex NIC-planar graph admits a NIC-planar RAC drawing with at most one bend per edge on a grid of size O(n)×O(n)O(n) \times O(n). Then, we show that every nn-vertex 1-planar graph admits a 1-planar RAC drawing with at most two bends per edge on a grid of size O(n3)×O(n3)O(n^3) \times O(n^3). Finally, we make two known algorithms embedding-preserving; for drawing 1-planar RAC graphs with at most one bend per edge and for drawing IC-planar RAC graphs straight-line

    3D Visibility Representations of 1-planar Graphs

    Full text link
    We prove that every 1-planar graph G has a z-parallel visibility representation, i.e., a 3D visibility representation in which the vertices are isothetic disjoint rectangles parallel to the xy-plane, and the edges are unobstructed z-parallel visibilities between pairs of rectangles. In addition, the constructed representation is such that there is a plane that intersects all the rectangles, and this intersection defines a bar 1-visibility representation of G.Comment: Appears in the Proceedings of the 25th International Symposium on Graph Drawing and Network Visualization (GD 2017

    Pixel and Voxel Representations of Graphs

    Full text link
    We study contact representations for graphs, which we call pixel representations in 2D and voxel representations in 3D. Our representations are based on the unit square grid whose cells we call pixels in 2D and voxels in 3D. Two pixels are adjacent if they share an edge, two voxels if they share a face. We call a connected set of pixels or voxels a blob. Given a graph, we represent its vertices by disjoint blobs such that two blobs contain adjacent pixels or voxels if and only if the corresponding vertices are adjacent. We are interested in the size of a representation, which is the number of pixels or voxels it consists of. We first show that finding minimum-size representations is NP-complete. Then, we bound representation sizes needed for certain graph classes. In 2D, we show that, for kk-outerplanar graphs with nn vertices, Θ(kn)\Theta(kn) pixels are always sufficient and sometimes necessary. In particular, outerplanar graphs can be represented with a linear number of pixels, whereas general planar graphs sometimes need a quadratic number. In 3D, Θ(n2)\Theta(n^2) voxels are always sufficient and sometimes necessary for any nn-vertex graph. We improve this bound to Θ(n⋅τ)\Theta(n\cdot \tau) for graphs of treewidth τ\tau and to O((g+1)2nlog⁥2n)O((g+1)^2n\log^2n) for graphs of genus gg. In particular, planar graphs admit representations with O(nlog⁥2n)O(n\log^2n) voxels

    Triangle-Free Penny Graphs: Degeneracy, Choosability, and Edge Count

    Full text link
    We show that triangle-free penny graphs have degeneracy at most two, list coloring number (choosability) at most three, diameter D=Ω(n)D=\Omega(\sqrt n), and at most min⁥(2n−Ω(n),2n−D−2)\min\bigl(2n-\Omega(\sqrt n),2n-D-2\bigr) edges.Comment: 10 pages, 2 figures. To appear at the 25th International Symposium on Graph Drawing and Network Visualization (GD 2017

    Recognizing and Drawing IC-planar Graphs

    Full text link
    IC-planar graphs are those graphs that admit a drawing where no two crossed edges share an end-vertex and each edge is crossed at most once. They are a proper subfamily of the 1-planar graphs. Given an embedded IC-planar graph GG with nn vertices, we present an O(n)O(n)-time algorithm that computes a straight-line drawing of GG in quadratic area, and an O(n3)O(n^3)-time algorithm that computes a straight-line drawing of GG with right-angle crossings in exponential area. Both these area requirements are worst-case optimal. We also show that it is NP-complete to test IC-planarity both in the general case and in the case in which a rotation system is fixed for the input graph. Furthermore, we describe a polynomial-time algorithm to test whether a set of matching edges can be added to a triangulated planar graph such that the resulting graph is IC-planar

    Visibility Representations of Boxes in 2.5 Dimensions

    Full text link
    We initiate the study of 2.5D box visibility representations (2.5D-BR) where vertices are mapped to 3D boxes having the bottom face in the plane z=0z=0 and edges are unobstructed lines of sight parallel to the xx- or yy-axis. We prove that: (i)(i) Every complete bipartite graph admits a 2.5D-BR; (ii)(ii) The complete graph KnK_n admits a 2.5D-BR if and only if n≀19n \leq 19; (iii)(iii) Every graph with pathwidth at most 77 admits a 2.5D-BR, which can be computed in linear time. We then turn our attention to 2.5D grid box representations (2.5D-GBR) which are 2.5D-BRs such that the bottom face of every box is a unit square at integer coordinates. We show that an nn-vertex graph that admits a 2.5D-GBR has at most 4n−6n4n - 6 \sqrt{n} edges and this bound is tight. Finally, we prove that deciding whether a given graph GG admits a 2.5D-GBR with a given footprint is NP-complete. The footprint of a 2.5D-BR Γ\Gamma is the set of bottom faces of the boxes in Γ\Gamma.Comment: Appears in the Proceedings of the 24th International Symposium on Graph Drawing and Network Visualization (GD 2016

    Comparing the hierarchy of keywords in on-line news portals

    Get PDF
    The tagging of on-line content with informative keywords is a widespread phenomenon from scientific article repositories through blogs to on-line news portals. In most of the cases, the tags on a given item are free words chosen by the authors independently. Therefore, relations among keywords in a collection of news items is unknown. However, in most cases the topics and concepts described by these keywords are forming a latent hierarchy, with the more general topics and categories at the top, and more specialised ones at the bottom. Here we apply a recent, cooccurrence-based tag hierarchy extraction method to sets of keywords obtained from four different on-line news portals. The resulting hierarchies show substantial differences not just in the topics rendered as important (being at the top of the hierarchy) or of less interest (categorised low in the hierarchy), but also in the underlying network structure. This reveals discrepancies between the plausible keyword association frameworks in the studied news portals

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≄20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≀pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≀{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal
    • 

    corecore