46 research outputs found

    Recovery Planning for Pacific Marine Species at Risk in the Wake of Climate Change and Ocean Acidification: Canadian Practice, Future Courses

    Get PDF
    This article evaluates how Canadian recovery planning for Pacific marine species at risk incorporates two pressing 21st century concerns: global climate change and ocean acidification (OA). While many recovery strategies for Pacific species at risk show some understanding of climate change or OA, they generally fail to incorporate key climate and OA information or to consider how these two issues will actually affect the species in question. Two strategies for progress are suggested. First is an administrative strategy that includes the development of a national climate change adaptation strategy, which clarifies how projected climate and ocean acidification impacts should be incorporated into decision-making under the Species at Risk Act (SARA). Second is a legal course that includes an amendment of SARA or regulations thereunder that require up-to-date climate and ocean acidification information to be incorporated during recovery planning. In addition to the administrative and legal courses suggested, a precautionary, yet bold and flexible approach to recovery planning is advocated that aims to achieve species resilience rather than meeting historical population levels (which may already be impossible to achieve given shifting ecological, biological and physical baselines. This article is a follow up to a similar piece that examined Atlantic species at risk

    Radiographic features of liver allograft rejection

    Get PDF
    The radiographic features of 19 transplanted patients with failure of the liver allograft were evaluated. These features were: poor filling, stretching, attenuation of intrahepatic biliary ducts documented by T-tube cholangiogram, attenuation of branches of the hepatic artery seen on angiogram as well as a decrease of blood flow through the liver seen on angiogram and nuclear medicine dynamic scintigram. These findings were secondary to swelling of the transplanted liver and were not specific for rejection; they may also be present in hepatic infarction or infection

    Developing priority variables ("ecosystem Essential Ocean Variables" — eEOVs) for observing dynamics and change in Southern Ocean ecosystems

    Get PDF
    Reliable statements about variability and change in marine ecosystems and their underlying causes are needed to report on their status and to guide management. Here we use the Framework on Ocean Observing (FOO) to begin developing ecosystem Essential Ocean Variables (eEOVs) for the Southern Ocean Observing System (SOOS). An eEOV is a defined biological or ecological quantity, which is derived from field observations, and which contributes significantly to assessments of Southern Ocean ecosystems. Here, assessments are concerned with estimating status and trends in ecosystem properties, attribution of trends to causes, and predicting future trajectories. eEOVs should be feasible to collect at appropriate spatial and temporal scales and are useful to the extent that they contribute to direct estimation of trends and/or attribution, and/or development of ecological (statistical or simulation) models to support assessments. In this paper we outline the rationale, including establishing a set of criteria, for selecting eEOVs for the SOOS and develop a list of candidate eEOVs for further evaluation. Other than habitat variables, nine types of eEOVs for Southern Ocean taxa are identified within three classes: state (magnitude, genetic/species, size spectrum), predator–prey (diet, foraging range), and autecology (phenology, reproductive rate, individual growth rate, detritus). Most candidates for the suite of Southern Ocean taxa relate to state or diet. Candidate autecological eEOVs have not been developed other than for marine mammals and birds. We consider some of the spatial and temporal issues that will influence the adoption and use of eEOVs in an observing system in the Southern Ocean, noting that existing operations and platforms potentially provide coverage of the four main sectors of the region — the East and West Pacific, Atlantic and Indian. Lastly, we discuss the importance of simulation modelling in helping with the design of the observing system in the long term. Regional boundary: south of 30°S

    Potential importance of physiologically diverse benthic foraminifera in sedimentary nitrate storage and respiration

    Get PDF
    Author Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 117 (2012): G03002, doi:10.1029/2012JG001949.Until recently, the process of denitrification (conversion of nitrate or nitrite to gaseous products) was thought to be performed exclusively by prokaryotes and fungi. The finding that foraminifera perform complete denitrification could impact our understanding of nitrate removal in sediments as well as our understanding of eukaryotic respiration, especially if it is widespread. However, details of this process and the subcellular location of these reactions in foraminifera remain uncertain. For example, prokaryotic endobionts, rather than the foraminifer proper, could perform denitrification, as has been shown recently in an allogromiid foraminifer. Here, intracellular nitrate concentrations and isotope ratios (δ15NNO3 and δ18ONO3) were measured to assess the nitrate dynamics in four benthic foraminiferal species (Bolivina argentea, Buliminella tenuata, Fursenkoina cornuta, Nonionella stella) with differing cellular architecture and associations with microbial endobionts, recovered from Santa Barbara Basin, California. Cellular nitrate concentrations were high (12–217 mM) in each species, and intracellular nitrate often had elevated δ15NNO3 and δ18ONO3 values. Experiments including suboxic and anoxic incubations of B. argentea revealed a decrease in intracellular nitrate concentration and an increase in δ15NNO3 and δ18ONO3 over time, indicating nitrate respiration and/or denitrification within the foraminifera. Results illustrate that nitrate reduction occurs in a range of foraminiferal species, including some possessing endobionts (including a chloroplast-sequestering species) and others lacking endobionts, implying that microbial associates may not solely be responsible for this process in foraminifera. Furthermore, we show that benthic foraminifera may represent important reservoirs of nitrate storage in sediments, as well as mediators of its removal.This research was supported by NSF grant EF-0702491 to JMB, KLC, and VPE.2013-01-0

    From Sea to Sea: Canada's Three Oceans of Biodiversity

    Get PDF
    Evaluating and understanding biodiversity in marine ecosystems are both necessary and challenging for conservation. This paper compiles and summarizes current knowledge of the diversity of marine taxa in Canada's three oceans while recognizing that this compilation is incomplete and will change in the future. That Canada has the longest coastline in the world and incorporates distinctly different biogeographic provinces and ecoregions (e.g., temperate through ice-covered areas) constrains this analysis. The taxonomic groups presented here include microbes, phytoplankton, macroalgae, zooplankton, benthic infauna, fishes, and marine mammals. The minimum number of species or taxa compiled here is 15,988 for the three Canadian oceans. However, this number clearly underestimates in several ways the total number of taxa present. First, there are significant gaps in the published literature. Second, the diversity of many habitats has not been compiled for all taxonomic groups (e.g., intertidal rocky shores, deep sea), and data compilations are based on short-term, directed research programs or longer-term monitoring activities with limited spatial resolution. Third, the biodiversity of large organisms is well known, but this is not true of smaller organisms. Finally, the greatest constraint on this summary is the willingness and capacity of those who collected the data to make it available to those interested in biodiversity meta-analyses. Confirmation of identities and intercomparison of studies are also constrained by the disturbing rate of decline in the number of taxonomists and systematists specializing on marine taxa in Canada. This decline is mostly the result of retirements of current specialists and to a lack of training and employment opportunities for new ones. Considering the difficulties encountered in compiling an overview of biogeographic data and the diversity of species or taxa in Canada's three oceans, this synthesis is intended to serve as a biodiversity baseline for a new program on marine biodiversity, the Canadian Healthy Ocean Network. A major effort needs to be undertaken to establish a complete baseline of Canadian marine biodiversity of all taxonomic groups, especially if we are to understand and conserve this part of Canada's natural heritage

    Progress and Challenges in Coupled Hydrodynamic-Ecological Estuarine Modeling

    Get PDF
    corecore