314 research outputs found

    SECaps: A Sequence Enhanced Capsule Model for Charge Prediction

    Full text link
    Automatic charge prediction aims to predict appropriate final charges according to the fact descriptions for a given criminal case. Automatic charge prediction plays a critical role in assisting judges and lawyers to improve the efficiency of legal decisions, and thus has received much attention. Nevertheless, most existing works on automatic charge prediction perform adequately on high-frequency charges but are not yet capable of predicting few-shot charges with limited cases. In this paper, we propose a Sequence Enhanced Capsule model, dubbed as SECaps model, to relieve this problem. Specifically, following the work of capsule networks, we propose the seq-caps layer, which considers sequence information and spatial information of legal texts simultaneously. Then we design a attention residual unit, which provides auxiliary information for charge prediction. In addition, our SECaps model introduces focal loss, which relieves the problem of imbalanced charges. Comparing the state-of-the-art methods, our SECaps model obtains 4.5% and 6.4% absolutely considerable improvements under Macro F1 in Criminal-S and Criminal-L respectively. The experimental results consistently demonstrate the superiorities and competitiveness of our proposed model.Comment: 13 pages, 3figures, 5 table

    Mutual information for the selection of relevant variables in spectrometric nonlinear modelling

    Get PDF
    Data from spectrophotometers form vectors of a large number of exploitable variables. Building quantitative models using these variables most often requires using a smaller set of variables than the initial one. Indeed, a too large number of input variables to a model results in a too large number of parameters, leading to overfitting and poor generalization abilities. In this paper, we suggest the use of the mutual information measure to select variables from the initial set. The mutual information measures the information content in input variables with respect to the model output, without making any assumption on the model that will be used; it is thus suitable for nonlinear modelling. In addition, it leads to the selection of variables among the initial set, and not to linear or nonlinear combinations of them. Without decreasing the model performances compared to other variable projection methods, it allows therefore a greater interpretability of the results

    A Theoretical Framework for Target Propagation

    Full text link
    The success of deep learning, a brain-inspired form of AI, has sparked interest in understanding how the brain could similarly learn across multiple layers of neurons. However, the majority of biologically-plausible learning algorithms have not yet reached the performance of backpropagation (BP), nor are they built on strong theoretical foundations. Here, we analyze target propagation (TP), a popular but not yet fully understood alternative to BP, from the standpoint of mathematical optimization. Our theory shows that TP is closely related to Gauss-Newton optimization and thus substantially differs from BP. Furthermore, our analysis reveals a fundamental limitation of difference target propagation (DTP), a well-known variant of TP, in the realistic scenario of non-invertible neural networks. We provide a first solution to this problem through a novel reconstruction loss that improves feedback weight training, while simultaneously introducing architectural flexibility by allowing for direct feedback connections from the output to each hidden layer. Our theory is corroborated by experimental results that show significant improvements in performance and in the alignment of forward weight updates with loss gradients, compared to DTP.Comment: 13 pages and 4 figures in main manuscript; 41 pages and 8 figures in supplementary materia

    A data-driven functional projection approach for the selection of feature ranges in spectra with ICA or cluster analysis

    Get PDF
    Prediction problems from spectra are largely encountered in chemometry. In addition to accurate predictions, it is often needed to extract information about which wavelengths in the spectra contribute in an effective way to the quality of the prediction. This implies to select wavelengths (or wavelength intervals), a problem associated to variable selection. In this paper, it is shown how this problem may be tackled in the specific case of smooth (for example infrared) spectra. The functional character of the spectra (their smoothness) is taken into account through a functional variable projection procedure. Contrarily to standard approaches, the projection is performed on a basis that is driven by the spectra themselves, in order to best fit their characteristics. The methodology is illustrated by two examples of functional projection, using Independent Component Analysis and functional variable clustering, respectively. The performances on two standard infrared spectra benchmarks are illustrated.Comment: A paraitr

    Real-time visualization of a sparse parametric mixture model for BTF rendering

    Get PDF
    Bidirectional Texture Functions (BTF) allow high quality visualization of real world materials exhibiting complex appearance and details that can not be faithfully represented using simpler analytical or parametric representations. Accurate representations of such materials require huge amounts of data, hindering real time rendering. BTFs compress the raw original data, constituting a compromise between visual quality and rendering time. This paper presents an implementation of a state of the art BTF representation on the GPU, allowing interactive high fidelity visualization of complex geometric models textured with multiple BTFs. Scalability with respect to the geometric complexity, amount of lights and number of BTFs is also studied.Fundação para a Ciência e Tecnologi

    Sparse multinomial kernel discriminant analysis (sMKDA)

    No full text
    Dimensionality reduction via canonical variate analysis (CVA) is important for pattern recognition and has been extended variously to permit more flexibility, e.g. by "kernelizing" the formulation. This can lead to over-fitting, usually ameliorated by regularization. Here, a method for sparse, multinomial kernel discriminant analysis (sMKDA) is proposed, using a sparse basis to control complexity. It is based on the connection between CVA and least-squares, and uses forward selection via orthogonal least-squares to approximate a basis, generalizing a similar approach for binomial problems. Classification can be performed directly via minimum Mahalanobis distance in the canonical variates. sMKDA achieves state-of-the-art performance in terms of accuracy and sparseness on 11 benchmark datasets

    The European Union approach to flood risk management and improving societal resilience: lessons from the implementation of the Floods Directive in six European countries

    Get PDF
    Diversity in flood risk management approaches is often considered to be a strength. However in some national settings, and especially for transboundary rivers, variability and the incompatibility of approaches can reduce the effectiveness of flood risk management. Placed in the context of increasing flood risks, as well as the potential for flooding to undermine the European Union's sustainable development goals, a desire to increase societal resilience to flooding has prompted the introduction of a common European Framework. This paper provides a legal and policy analysis of the implementation of the Floods Directive (2007/60/EC) in six countries; Belgium (Flemish Region), England, France, the Netherlands, Poland and Sweden. Evaluation criteria from existing legal and policy literature frame the study of the Directive and its impact on enhancing or constraining societal resilience by using an adaptive governance approach. These criteria are initially used to analyze the key components of the EU approach, before providing insight of the implementation of the Directive at a national level. Similarities and differences in the legal translation of European goals into existing flood risk management are analyzed alongside their relative influence on policy and practice. The research highlights that the impact of the Floods Directive on increasing societal resilience has been nationally variable, in part due to its focus on procedural obligations, rather than on more substantive requirements. Analysis shows that despite a focus on transboundary river basin management, in some cases existing traditions of flood risk management, have overridden objectives to harmonize flood risk management. This could be strengthened by requiring more stringent cooperation and providing the competent authorities in International River Basins Districts with more power. Despite some shortcomings in directly impacting flood risk outcomes, the Directive has positively stimulated discussion and flood risk management planning in countries that were perhaps lagging behind

    Explaining Support Vector Machines: A Color Based Nomogram.

    Get PDF
    PROBLEM SETTING: Support vector machines (SVMs) are very popular tools for classification, regression and other problems. Due to the large choice of kernels they can be applied with, a large variety of data can be analysed using these tools. Machine learning thanks its popularity to the good performance of the resulting models. However, interpreting the models is far from obvious, especially when non-linear kernels are used. Hence, the methods are used as black boxes. As a consequence, the use of SVMs is less supported in areas where interpretability is important and where people are held responsible for the decisions made by models. OBJECTIVE: In this work, we investigate whether SVMs using linear, polynomial and RBF kernels can be explained such that interpretations for model-based decisions can be provided. We further indicate when SVMs can be explained and in which situations interpretation of SVMs is (hitherto) not possible. Here, explainability is defined as the ability to produce the final decision based on a sum of contributions which depend on one single or at most two input variables. RESULTS: Our experiments on simulated and real-life data show that explainability of an SVM depends on the chosen parameter values (degree of polynomial kernel, width of RBF kernel and regularization constant). When several combinations of parameter values yield the same cross-validation performance, combinations with a lower polynomial degree or a larger kernel width have a higher chance of being explainable. CONCLUSIONS: This work summarizes SVM classifiers obtained with linear, polynomial and RBF kernels in a single plot. Linear and polynomial kernels up to the second degree are represented exactly. For other kernels an indication of the reliability of the approximation is presented. The complete methodology is available as an R package and two apps and a movie are provided to illustrate the possibilities offered by the method

    Assessing the legitimacy of flood risk governance arrangements in Europe: insights from intra-country evaluations

    Get PDF
    Legitimacy has received comparatively less attention than societal resilience in the context of flooding, thus methods for assessing and monitoring the legitimacy of Flood Risk Governance Arrangements (FRGA) are noticeably lacking. This study attempts to address this gap by assessing the legitimacy of FRGAs in six European countries through cross-disciplinary and comparative research methods. On the basis of this assessment, recommendation
    • …
    corecore