788 research outputs found

    High Temperature Expansions and Dynamical Systems

    Full text link
    We develop a resummed high-temperature expansion for lattice spin systems with long range interactions, in models where the free energy is not, in general, analytic. We establish uniqueness of the Gibbs state and exponential decay of the correlation functions. Then, we apply this expansion to the Perron-Frobenius operator of weakly coupled map lattices.Comment: 33 pages, Latex; [email protected]; [email protected]

    Phase Transition in the 1d Random Field ising model with long range interaction

    Full text link
    We study the one dimensional Ising model with ferromagnetic, long range interaction which decays as |i-j|^{-2+a}, 1/2< a<1, in the presence of an external random filed. we assume that the random field is given by a collection of independent identically distributed random variables, subgaussian with mean zero. We show that for temperature and strength of the randomness (variance) small enough with P=1 with respect to the distribution of the random fields there are at least two distinct extremal Gibbs measures

    Translation-invariance of two-dimensional Gibbsian point processes

    Full text link
    The conservation of translation as a symmetry in two-dimensional systems with interaction is a classical subject of statistical mechanics. Here we establish such a result for Gibbsian particle systems with two-body interaction, where the interesting cases of singular, hard-core and discontinuous interaction are included. We start with the special case of pure hard core repulsion in order to show how to treat hard cores in general.Comment: 44 pages, 6 figure

    Neighborhood radius estimation in Variable-neighborhood Random Fields

    Full text link
    We consider random fields defined by finite-region conditional probabilities depending on a neighborhood of the region which changes with the boundary conditions. To predict the symbols within any finite region it is necessary to inspect a random number of neighborhood symbols which might change according to the value of them. In analogy to the one dimensional setting we call these neighborhood symbols the context of the region. This framework is a natural extension, to d-dimensional fields, of the notion of variable-length Markov chains introduced by Rissanen (1983) in his classical paper. We define an algorithm to estimate the radius of the smallest ball containing the context based on a realization of the field. We prove the consistency of this estimator. Our proofs are constructive and yield explicit upper bounds for the probability of wrong estimation of the radius of the context

    Quantum Markov fields on graphs

    Get PDF
    We introduce generalized quantum Markov states and generalized d-Markov chains which extend the notion quantum Markov chains on spin systems to that on CC^*-algebras defined by general graphs. As examples of generalized d-Markov chains, we construct the entangled Markov fields on tree graphs. The concrete examples of generalized d-Markov chains on Cayley trees are also investigated.Comment: 23 pages, 1 figure. accepted to "Infinite Dimensional Anal. Quantum Probability & Related Topics

    Droplet condensation and isoperimetric towers

    Get PDF
    We consider a variational problem in a planar convex domain, motivated by statistical mechanics of crystal growth in a saturated solution. The minimizers are constructed explicitly and are completely characterized

    On the formation/dissolution of equilibrium droplets

    Full text link
    We consider liquid-vapor systems in finite volume VRdV\subset\R^d at parameter values corresponding to phase coexistence and study droplet formation due to a fixed excess δN\delta N of particles above the ambient gas density. We identify a dimensionless parameter Δ(δN)(d+1)/d/V\Delta\sim(\delta N)^{(d+1)/d}/V and a \textrm{universal} value \Deltac=\Deltac(d), and show that a droplet of the dense phase occurs whenever \Delta>\Deltac, while, for \Delta<\Deltac, the excess is entirely absorbed into the gaseous background. When the droplet first forms, it comprises a non-trivial, \textrm{universal} fraction of excess particles. Similar reasoning applies to generic two-phase systems at phase coexistence including solid/gas--where the ``droplet'' is crystalline--and polymorphic systems. A sketch of a rigorous proof for the 2D Ising lattice gas is presented; generalizations are discussed heuristically.Comment: An announcement of a forthcoming rigorous work on the 2D Ising model; to appear in Europhys. Let

    Fluctuations of the Phase Boundary in the Ising Ferromagnet

    Get PDF
    We discuss statistical properties of phase boundary in the 2D low-temperature Ising ferromagnet in a box with the two-component boundary conditions. We prove the weak convergence in C [O, 1] of measures describing the fluctuations of phase boundaries in the canonical ensemble of interfaces with fixed endpoints and area enclosed below them. The limiting Gaussian measure coincides with the conditional distribution of certain Gaussian process obtained by the integral transformation of the white noise

    Dobrushin states in the \phi^4_1 model

    Full text link
    We consider the van der Waals free energy functional in a bounded interval with inhomogeneous Dirichlet boundary conditions imposing the two stable phases at the endpoints. We compute the asymptotic free energy cost, as the length of the interval diverges, of shifting the interface from the midpoint. We then discuss the effect of thermal fluctuations by analyzing the \phi^4_1-measure with Dobrushin boundary conditions. In particular, we obtain a nontrivial limit in a suitable scaling in which the length of the interval diverges and the temperature vanishes. The limiting state is not translation invariant and describes a localized interface. This result can be seen as the probabilistic counterpart of the variational convergence of the associated excess free energy.Comment: 34 page

    The low-temperature phase of Kac-Ising models

    Get PDF
    We analyse the low temperature phase of ferromagnetic Kac-Ising models in dimensions d2d\geq 2. We show that if the range of interactions is \g^{-1}, then two disjoint translation invariant Gibbs states exist, if the inverse temperature \b satisfies \b -1\geq \g^\k where \k=\frac {d(1-\e)}{(2d+1)(d+1)}, for any \e>0. The prove involves the blocking procedure usual for Kac models and also a contour representation for the resulting long-range (almost) continuous spin system which is suitable for the use of a variant of the Peierls argument.Comment: 19pp, Plain Te
    corecore