
Real-Time Visualization of a Sparse Parametric

Mixture Model for BTF Rendering

Nuno Silva1,�, Lúıs Paulo Santos2, and Donald Fussell3

1 Centro de Computação Gráfica, Campus de Azurém, Guimarães, Portugal
2 Dep. Informática, Universidade do Minho, Braga, Portugal

3 The University of Texas at Austin, Texas, USA

Abstract. Bidirectional Texture Functions (BTF) allow high quality
visualization of real world materials exhibiting complex appearance and
details that can not be faithfully represented using simpler analytical or
parametric representations. Accurate representations of such materials
require huge amounts of data, hindering real time rendering. BTFs com-
press the raw original data, constituting a compromise between visual
quality and rendering time. This paper presents an implementation of a
state of the art BTF representation on the GPU, allowing interactive high
fidelity visualization of complex geometric models textured with multiple
BTFs. Scalability with respect to the geometric complexity, amount of
lights and number of BTFs is also studied.

1 Introduction

Digital representations of complex materials can have a major role in footwear
and textile industries, assisting designers and artists in virtual prototyping new
products and providing end-users realistic visualizations of such products. For
the designer, the usefulness of these tools is greatly dependent on both the
representation quality and high fidelity interactive visualization rates; achieving
both these requirements is a challenging task.

A material’s appearance depends on the way radiant flux is scattered when it
hits a surface, and varies, among others, according to incoming light and observa-
tion directions [1]. Parametric Bidirectional Reflectance Distribution Functions
(BRDF) are often used to model a material’s appearance, but they cannot sim-
ulate many complex lighting phenomena such as self-shadowing, self-occlusion,
sub-surface scattering and inter-reflections. Instead, image based approaches,
such as the Bidirectional Texture Function (BTF), are becoming ever more pop-
ular due to the realism they can provide, the improvement in acquisition systems
quality and the increasing computational power of GPUs [1–3].

The BTF is a 6D function [4] that models a material’s appearance at a given
point on the surface by recording several images captured under different lighting

� Work partially funded by QREN project nbr. 13114 TOPIC Shoe and by National
Funds through the FCT - Fundação para a Ciência e a Tecnologia (Portuguese
Foundation for Science and Technology) within project PEst-OE/EEI/UI0752/2011.

G. Bebis et al. (Eds.): ISVC 2012, Part I, LNCS 7431, pp. 719–728, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55626501?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


720 N. Silva, L.P. Santos, and D. Fussell

(a) (b)

Fig. 1. High fidelity interactive rendering: a corduroy shirt (a), and a shoe with multiple
BTFs (b)

and viewing directions. The images are stored in large tables, and rendering
involves simple look-ups within these. A single BTF can take up several gigabytes
of storage, too much to be of practical use in real-time rendering. To tackle this
problem, the BTF data must be transformed into a compact and efficiently
renderable representation, without compromising image fidelity [2, 3, 5–7].

Wu et al. [8] presented a novel general representation for BTFs, the Sparse
Parametric Mixture Model (SPMM). They demonstrate their approach using
a parallel ray tracer, which, although achieving high quality visualizations, is
far from interactive. This paper presents a rasterization oriented visualizer for
SPMMs that achieves interactive frame rates for complex models involving mul-
tiple BTFs, without compromising on visual quality. Rendering times are de-
pendent on the number of geometric primitives, number of fragments mapped
with an SPMM and number of light sources; scalability is studied with respect
to these parameters. The proposed interactive visualizer is currently being used
by project partners in the Portuguese footwear industry.

This paper is organized as follows: first, background on material appearance
and their representations is presented, along with the SPMM and other related
work. Then, our approach to achieve real-time rates is described, followed by a
discussion of results. The paper terminates with conclusions and future work.

2 Appearance Modeling and Visualization

Most real world materials exhibit complex appearance that can be described at
three levels [2, 9]. The macroscale is the large scale geometry of the object, tra-
ditionally modeled with explicit representations, such as polygon meshes. The
microscale level relates to interactions of light with a point on the surface of
the material, and can be represented using BRDFs. The mesoscale level is in



Real-Time Visualization of a SPMM for BTF Rendering 721

between these two and comprises various subtle lighting effects such as self-
shadowing, self-occlusion, sub-surface scattering and inter-reflections, which can-
not be faithfully represented with the BRDF; instead, image based approaches
are used, the most common method being texture mapping. Spatially-Varying
BRDFs (SVBRDF) [10], which can be seen as a combination of texture map-
ping and BRDFs, account for materials that have different BRDFs throughout
their surfaces; while addressing some of the issues raised at the mesoscale level,
they cannot capture self-shadowing and self-occlusion. For that, BTFs, an image
driven approach, are often used instead. A Bidirectional Subsurface Scattering
Reflectance Distribution Function (BSSRDF) can model all these light phenom-
ena, but is much too complex to be usable in interactive rendering pipelines, and
current capturing systems only allow to measure subsets of this function [1, 2].

It must be noted that appearance can be reproduced by following a procedu-
ral approach, i.e., hand-tuning an algorithm and mathematical functions until
the desired effect is achieved [11]. This is, however, a time consuming task that
demands high level of expertise and might still fail to accurately simulate real
world materials. Image based approaches are ever more popular because appear-
ance is measured using cameras, demanding no particular expertise, thus being
more adequate for project partners in the Portuguese footwear industry.

2.1 Bidirectional Texture Function

The BTF emerged as an alternative that represents both mesoscale and mi-
croscale levels. For each wavelength, it models the material appearance based on
a point on the surface (x), and the incident and reflection directions (ωi, ωo).

BTFs model the appearance of a material from several images captured under
different observation and lighting directions; they can be seen as a special class
of the SVBRDF since surfaces are assumed to be planar [12]. A good quality
BTF, such as the ones in the Bonn database [7], encodes 81×81 images for light
and viewing directions, each consisting of 2562 texels with three spectral values
(RGB). This corresponds to roughly 1.2GB of raw data for a single BTF, not
including High Dynamic Range (HDR) effects.

Achieving interactive visualization rates of objects with multiple BTFs re-
quires compressing the raw data, while preserving as many of the relevant fea-
tures of the BTF as possible. Compression must exploit the redundancy in the
data in an efficient way, and allow fast decompression for real-time rendering.
Refer to [2] and [3] for further details on BTF modeling.

2.2 The Sparse Parametric Mixture Model

In the SPMM representation proposed by Wu et al. [8], the captured data is
analyzed and fit into a number of different parametric functions, each defined
as a cosine-weighted rotated BRDF. Equation 1 describes such functions, where
fj(kj , ·) is one analytical BRDF model, with parameters kj . R is a rotation that
transforms a vector into the local coordinate system defined by local normal nj .



722 N. Silva, L.P. Santos, and D. Fussell

ρj(ωi, ωo) = fj(kj , R(ωi), R(ωo))(nj · ωi). (1)

The original data at a point x can be approximated by using a weighted linear
combination of m such functions (see equation 2 and figure 2), each with weight
αj . Subtle appearance details that cannot be fit into the parametric functions
are stored as a residual function, εx, which is obtained by subtracting the linear
combination of parametric functions from the original BTF.

BTFx(ωi, ωo)(nx · ωi) =

m∑

j=1

αjρj(ωi, ωo) + εx(ωi, ωo). (2)

Fig. 2. Illustration of the SPMM representation. The BTF is approximated by a sum
of analytical models and a residual part. Each analytical model has its own local frame.
Adapted from Wu et al. [8].

Since fitting all the texels of the BTF is computationally expensive, spatial
coherence of the original data is exploited through multilevel k-means clustering.
The full fitting algorithm is applied to some selected representative texels, and
the resulting parametric functions are used as a dictionary to accelerate the
fitting of the other texels in the cluster. The residual function εx is also computed
on a per-cluster basis. It is suggested that εx can be improved by storing a few
additional basis error functions and respective coefficients obtained from Local
Principal Component Analysis (LPCA) [5]; this allows marginal improvements
of image quality at the cost of increased memory requirements. We support both
options, allowing adaptation of image quality, and thus rendering times, to the
available computing power on the graphics board (see sections 3.1 and 4).

By fitting BTF data into a sum of parametric functions, the SPMM provides a
general representation that allows the volume of data to be significantly reduced,
enables efficient rendering and intuitive editing of parameters. Wu et al. tested
the SPMM with the Bonn database [7] of BTFs; our GPU implementation is
based on those representations.

3 Implementation

Our interactive visualizer uses the OpenGL API to communicate with the GPU
and GLSL to program the shading process. Efficient use of the GPU requires



Real-Time Visualization of a SPMM for BTF Rendering 723

SPMM data to be stored in the device texture memory, as 1D, 2D or 3D arrays
[13, 14], allowing fast random accesses and high bandwidth. Thus, texture mem-
ory stores the cluster identifier for each texel, the parametric functions ρj , their
corresponding parameters kj and weights αj , and the residual function εx.

The SPMM is not geared towards optimal GPU performance because it con-
sists of a linear combination of different analytical BRDFs, and directly trans-
lating the CPU shader into a GPU shader results in a lot of branching and loop
instructions (and a very large shader code base). Transforming the data struc-
tures in order to fit the GPU streaming programming model is also challenging.

First, OpenGL only allows to store basic data types into texture memory: 1,
2, or 4 byte words, fixed or floating point. The data format used is a crucial
aspect in GPUs because it determines the amount of storage and bandwidth
required; we minimize the number of bytes required for each texture. SPMMs
generated from BTFs in the Bonn database [7] group texels into 32 clusters, thus
the cluster identifier can be stored with a single byte. Other textures that use
fixed point values store indexes or identifiers and so they are represented with 2
bytes. Textures that store the parametric function weights, their parameters and
the residual function are in the floating point format, encoded in half-precision
with 2 bytes. In our experiments this does not produce visible artifacts whilst
greatly reducing memory requirements and improving render time.

The second issue is that the number of parametric functions m is not the same
across all texels, and dynamically sending this information to the GPU would
make real-time rendering hard to achieve. Calculating the maximum number
of functions for all texels and letting all fragment shaders do roughly the same
amount of work resulted in poor performance. Our implementation precomputes
m for each texel and stores it in an additional texture. This resulted in higher
frame rates, especially noticeable when the number of parametric functions varies
greatly from one texel to another, i.e., when the BTF exhibits locally complex
reflectance variations.

The third problem arises from the sparse discretization of the view/lighting
directions during the BTF measurement. In order to render the BTF under novel
viewing or lighting directions, interpolation of the closest view/lighting slots
must be performed. The residual function must be interpolated in order to avoid
the appearance of artifacts when these slots change. The parametric functions
are not affected, since they are defined over the entire upper hemisphere. Those
direction slots can be interpreted as 3D points and projected onto a set of points
on the XY plane by ignoring the Z component. We then apply a Delaunay
triangulation and store the resulting triangles in a texture. Interpolating now
consists of a ray-triangle test using barycentric coordinates [15], resulting in the
appropriate interpolation weights in case of a hit. This must be done separately
for the view and lighting directions, for a total of nine interpolation weights.

Finally, 2D arrays are transformed into slices of 3D arrays to avoid exceeding
the capabilities of the hardware. Figure 3 depicts the used data structures (some
of them presented in the following section) and the data flow to render the full
SPMM.



724 N. Silva, L.P. Santos, and D. Fussell

Fig. 3. The data flow in the fragment shader. The small rectangles, the squares and the
stacked squares depict, respectively, 1D, 2D and 3D textures. The diamonds represent
the combination of the inputs.

3.1 Optimizations

Profiling analysis indicated a bottleneck in the interpolation of the residual func-
tion. Since this is based on a ray-triangle test and the triangles are static and
well distributed over the unit circle, a regular grid is used to quickly discard tri-
angles, thus limiting intersections test to a (very small) subset of the triangles.
A compact grid structure with minimal memory requirements [16] is built once
in the CPU and uploaded to the GPU using 2 1D textures.

Equation 3 is used to perform the ray-triangle intersection test, where λ is the
vector of barycentric coordinates, r is the ray vector, and T is a matrix formed
by the Cartesian coordinates of the triangle vertices. This allows precomputation
of the inverse matrix T−1 for each triangle, reducing the intersection test on the
GPU to a vector subtraction and a matrix-vector multiplication. Additionally,
to maximize data locality, the inverse matrix, the Cartesian coordinates of each
vertex and its corresponding ID are packed together, for a total of 16 floats per
triangle. With both these optimizations the computational cost of evaluating the
residual function is roughly the same as evaluating the BRDFs, whereas before
optimizations, the former was around 3 times longer than the later.

(
λ1

λ2

)
= T−1(r − v3);

λ3 = 1− λ1 − λ2.
(3)

To take full advantage of the bandwidth of the GPU, we exploit the SIMD
patterns shader instructions, and strive to perform texel fetches of the RGBA



Real-Time Visualization of a SPMM for BTF Rendering 725

channels of each texture. However, not all textures can have data packed in order
to use all the available channels, and some demonstrated performance losses with
this new arrangement of data. As we are aware this can change between GPU
vendors and families of the same vendor, not much effort was put into fine tuning
the data layout of textures.

Finally, at rendering time the number of LPCA components used to evaluate
the residual function (see section 2.2) can be limited by a user defined param-
eter, allowing the program to adapt to the computing capabilities of the host
machine. In our experiments, this can greatly increase the frame rate whilst
having marginal impact on image quality.

4 Results

Experiments were conducted on a workstation equipped with an Intel 2.4GHz
quad-core processor, 4GB RAM and with a Nvidia GeForce GTX 580 GPU,
driver version 301.32. All tests were performed using the SPMM representation
of the BTFs in the Bonn Database [7], which have a spatial resolution of 256×
256 texels and an angular resolution of 81 × 81 directions. All the presented
tests use the Wool SPMM (except when otherwise explicitly stated), using half
precision floating point values (16 bits) which corresponds to 12.39MB of texture
data; all the other SPMMs demonstrate similar results. The render target size is
512× 512 pixels, all the LPCA coefficients in the residual function are evaluated
for maximum visualization quality, and all the reported values are the mean of
a 60 second run profiled using Nvidia Parallel Nsight 2.2.

4.1 Results Analysis

Figure 4(a) presents the frame rates achieved as a function of the percentage of
pixels in the render target covered by a SPMM fragment. It is clear that our
application is fill limited, since the most complex part of the code, the SPMM
evaluation, is completely written in a GLSL fragment shader. Nevertheless, even
with 80% of the pixels requiring an SPMM evaluation we achieve above 200 fps
with our hardware configuration.

Figure 4(b) depicts performance variation with the number of visible SPMMs.
The shoe model in figure 1(b) was initially mapped with the wool SPMM on five
different materials; each new test replaced one of those materials with a different
SPMM, until five were being used simultaneously, this way maintaining the same
number of pixels covered by SPMMs in all tests. Results demonstrate that the
number of SPMMs does not significantly affect frame rates, small differences
being due to variations in the parameters that define each SPMM.

Since GPU hardware changes considerably with each new family, and asso-
ciated compilers also differ accordingly, we used the GPU ShaderAnalyser tool
from AMD to analyze and predict the fragment shader performance on vari-
ous GPUs. We configured the analyzer to assume branch coherence of 90%, an



726 N. Silva, L.P. Santos, and D. Fussell

(a) (b)

Fig. 4. (a) Performance variation with the amount of pixels covered by the Wool
SPMM. (b) Performance variation with the number of SPMMs for a fixed number
of pixels covered by SPMMs.

average loop count of 4 and maximum loop count of 8. The reported results for
4 diferent AMD Radeon GPU families are presented in table 1. These show that
the shader is currently compute bound (see ALU:TEX and Bottleneck columns),
and throughput increases sharply with the higher clock rates and core count
available in newer GPU families. It is therefore to be expected that our visualizer
performance will continue to scale across new generations of GPUs.

Table 1. GPU ShaderAnalyzer output for various AMD Radeon GPUs. Avg - Average
number of cycles the shader is expected to take; ALU - The number of ALU instructions
in the shader; TEX - The number of texture fetch instructions in the shader; CF - The
number of control flow instructions in the shader; Throughput - Millions of pixels per
second; CR - Clock rate in MHz; CC - Number of stream processors .

Name Avg ALU TEX CF ALU:TEX Bottleneck Throughput CR CC

HD3870 263.06 826 105 213 2.41 ALU Ops 47 775 320

HD4890 105.22 840 109 213 2.13 ALU Ops 129 800 850

HD5870 55.94 845 109 212 1.07 ALU Ops 258 850 1600

HD6970 48.07 940 109 215 1.17 ALU Ops 293 880 1536

4.2 Scalability Analysis

Scalability of the visualizer with respect to the model and illumination com-
plexity is of paramount importance on an industrial setting. Figure 5 depicts
rendering times for various geometric complexity and directional light sources.

Rendering times increase linearly with the number of light sources. This is due
to the entire evaluation of the fragment shader for each light, but as indicated
in figure 3, not all data structures depend on the light direction; exploiting this
fact in future implementations can improve scalability with the number of lights.



Real-Time Visualization of a SPMM for BTF Rendering 727

(a) (b)

Fig. 5. Rendering times with increasing geometric complexity (a) and number of di-
rectional light sources (b)

The number of geometric primitives also has a significant impact on rendering
time. Although the SPMM is entirely calculated in a fragment shader, thus
independent from the vertex processing stage, our visualizer is not prepared
to handle large amounts of vertex data. Since the final goal is to integrate it
on a footwear CAD system developed by a project partner, this will feed the
visualizer with only the visible geometric primitives. Utilization on other contexts
is possible by applying appropriate culling techniques.

Nvidia Parallel Nsight reported, for all experiments, that the GPU is busy
processing the workload 92% of the time of each frame, which reinforces evidence
that the shader is compute bound and computing resources are being used near
their peak performance.

5 Conclusion and Future Work

We presented a GPU visualizer that combines the compaction benefits of the
original SPMM approach, a state of the art BTF representation format, with
the performance benefits of more GPU friendly approaches, enabling high fidelity
visualization at previously unreachable interactive rendering rates. It was shown
that performance is fill rate limited, that the main bottleneck is the number
of ALU operations in the shaders and the number of rendered SPMMs does
not affect performance. By precomputing barycentric coordinate matrices and
using acceleration structures we were able to further increase rendering rates,
exploiting on average 92% of computational resources.

As future work we would like to improve scalability and expand the visualizer
to allow real-time editing of SPMM parameters. We believe this can be of great
use for digital designers and artists, assisting in rapid virtual prototyping of new
products. Additionally, it would be interesting to support multiple GPUs and
progressive rendering in order to adapt to the compute capabilities of the host
machine. Also, mipmapping can boost performance and reduce aliasing artifacts.



728 N. Silva, L.P. Santos, and D. Fussell

References

1. Weyrich, T., Lawrence, J., Lensch, H., Rusinkiewicz, S., Zickler, T.: Principles of
appearance acquisition and representation. In: ACM SIGGRAPH 2008 Classes,
SIGGRAPH 2008, pp. 80:1–80:119. ACM, New York (2008)

2. Müller, G., Meseth, J., Sattler, M., Sarlette, R., Klein, R.: Acquisition, synthesis,
and rendering of bidirectional texture functions. Computer Graphics Forum 24,
83–109 (2005)

3. Filip, J., Haindl, M.: Bidirectional texture function modeling: A state of the
art survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 31,
1921–1940 (2009)

4. Dana, K.J., van Ginneken, B., Nayar, S.K., Koenderink, J.J.: Reflectance and
texture of real-world surfaces. ACM Trans. Graph. 18, 1–34 (1999)

5. Müller, G., Meseth, J., Klein, R.: Compression and real-time rendering of measured
btfs using local pca. In: Ertl, T., Girod, B., Greiner, G., Niemann, H., Seidel, H.P.,
Steinbach, E., Westermann, R. (eds.) Vision, Modeling and Visualisation 2003, pp.
271–280. Akademische Verlagsgesellschaft Aka GmbH, Berlin (2003)

6. Ma, W.C., Chao, S.H., Chen, B.Y., Chang, C.F., Ouhyoung, M., Nishita, T.: An
efficient representation of complex materials for real-time rendering. In: Proceed-
ings of the ACM Symposium on Virtual Reality Software and Technology, VRST
2004, pp. 150–153. ACM, New York (2004)

7. Sattler, M., Sarlette, R., Klein, R.: Efficient and realistic visualization of cloth. In:
Eurographics Symposium on Rendering 2003 (2003)

8. Wu, H., Dorsey, J., Rushmeier, H.: A sparse parametric mixture model for btf
compression, editing and rendering. Computer Graphics Forum 30, 465–473 (2011)

9. Suykens, F., Berge, K.V., Lagae, A., Dutr, P.: Interactive rendering with bidirec-
tional texture functions. Computer Graphics Forum 22, 463–472 (2003)

10. McAllister, D.K., Lastra, A., Heidrich, W.: Efficient rendering of spatial bi-
directional reflectance distribution functions. In: Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS Conference on Graphics Hardware, HWWS 2002, pp.
79–88. Eurographics Association, Aire-la-Ville (2002)

11. Ebert, D.S., Musgrave, F.K., Peachey, D., Perlin, K., Worley, S.: Texturing and
Modeling: A Procedural Approach, 3rd edn. Morgan Kaufmann Publishers Inc.,
San Francisco (2002)

12. Lawrence, J.: Acquisition and representation of material appearance for editing
and rendering. PhD thesis, Princeton, NJ, USA, AAI3214568 (2006)

13. Fernando, R.: GPU Gems: Programming Techniques, Tips and Tricks for Real-
Time Graphics. Pearson Higher Education (2004)

14. Pharr, M., Fernando, R.: GPU Gems 2: Programming Techniques for High-
Performance Graphics and General-Purpose Computation (Gpu Gems). Addison-
Wesley Professional (2005)

15. Pharr, M., Humphreys, G.: Physically Based Rendering: From Theory to Imple-
mentation, pp. 125–130. Morgan Kaufmann Publishers Inc., San Francisco (2004)

16. Lagae, A., Dutré, P.: Compact, fast and robust grids for ray tracing. In: Computer
Graphics Forum (Proceedings of the 19th Eurographics Symposium on Rendering),
vol. 27, pp. 1235–1244 (2008)


	Real-Time Visualization of a Sparse ParametricMixture Model for BTF Rendering
	Introduction
	Appearance Modeling and Visualization
	Bidirectional Texture Function
	The Sparse Parametric Mixture Model

	Implementation
	Optimizations

	Results
	Results Analysis
	Scalability Analysis

	Conclusion and Future Work
	References




