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Abstract

Background: Clinical data, such as patient history, laboratory analysis, ultrasound parameters-which are the basis of
day-to-day clinical decision support-are often used to guide the clinical management of cancer in the presence of
microarray data. Several data fusion techniques are available to integrate genomics or proteomics data, but only a few
studies have created a single prediction model using both gene expression and clinical data. These studies often
remain inconclusive regarding an obtained improvement in prediction performance. To improve clinical
management, these data should be fully exploited. This requires efficient algorithms to integrate these data sets and
design a final classifier.
LS-SVM classifiers and generalized eigenvalue/singular value decompositions are successfully used in many
bioinformatics applications for prediction tasks. While bringing up the benefits of these two techniques, we propose a
machine learning approach, a weighted LS-SVM classifier to integrate two data sources: microarray and clinical
parameters.

Results: We compared and evaluated the proposed methods on five breast cancer case studies. Compared to
LS-SVM classifier on individual data sets, generalized eigenvalue decomposition (GEVD) and kernel GEVD, the
proposed weighted LS-SVM classifier offers good prediction performance, in terms of test area under ROC Curve
(AUC), on all breast cancer case studies.

Conclusions: Thus a clinical classifier weighted with microarray data set results in significantly improved diagnosis,
prognosis and prediction responses to therapy. The proposed model has been shown as a promising mathematical
framework in both data fusion and non-linear classification problems.

Background
Microarray technology, which can handle thousands of
genes of several hundreds of patients at a time, makes it
hard for scientists to manually extract relevant informa-
tion about genes and diseases, especially cancer.Moreover
this technique suffers from a low signal-to-noise ratio.
Despite the rise of high-throughput technologies, clinical
data such as age, gender and medical history, guide clin-
ical management for most diseases and examinations. A
recent study [1] shows the importance of the integration of
microarray and clinical data has a synergetic effect on pre-
dicting breast cancer outcome. Gevaert et al. [2] have used
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a Bayesian framework to combine expression and clini-
cal data. They found that decision integration, and partial
integration leads to a better performance, whereas full
data integration showed no improvement. These results
were obtained by using a cross validation approach on the
78 samples in the van’t Veer et al. [3] data set. On the same
data set, Boulesteix et al. [4] employed random forests
and partial least squares approaches to combine expres-
sion and clinical data. In contrast, they reported that
microarray data do not noticeably improve the prediction
accuracy yielded by clinical parameters alone.
The representation of any data set with a real-valued

kernel matrix, independent of the nature or complexity of
data to be analyzed, makes kernel methods ideally posi-
tioned for heterogeneous data integrations [5]. Integration
of data using kernel fusion is featured by several advan-
tages. Biological data has diverse structures, for example,
high dimensional expression data, the sequence data, the
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annotation data, the text mining data and heterogeneous
nature of clinical data and so on. The main advantage is
that the data heterogeneity is rescued by the use of ker-
nel trick, where data which has diverse data structures
are all transformed into kernel matrices with same size.
To integrate them, one could follow the classical addi-
tive expansion strategy of machine learning to combine
them linearly [6]. These nonlinear integration methods of
kernels have attracted great interests in recent machine
learning research.
Daemen et al. [7] proposed kernel functions for clin-

ical parameters and pursued an integration approach
based on combining kernels (kernel inner product matri-
ces derived from the separate data types) for application
in a Least Squares Support Vector Machine (LS-SVM).
They explained that the newly proposed kernel func-
tions for clinical parameter does not suffer from the
ambiguity of data preprocessing by equally considering
all variables. That means, a distinction is made between
continuous variables, ordinal variables with an intrin-
sic ordering but often lacking equal distance between
two consecutive categories and nominal variables with-
out any ordering. They concluded that the clinical kernel
functions represent similarities between patients more
accurately than linear or polynomial kernel function for
modeling clinical data. Pittman et al. [8] combined clin-
ical and expression data for predicting breast cancer
outcome by means of a tree classifier. This tree classi-
fier was trained using meta-genes and/or clinical data as
inputs. They explained that key metagenes can up to to
a degree, replace traditional risk factors in terms of indi-
vidual association with recurrences. But the combination
of metagenes and clinical factors currently defines models
most relevant in terms of statistical fit and also, more prac-
tically, in terms of cross-validation predictive accuracy.
The resulting tree models provide an integrated clinico-
genomic analysis that generate substantially accurate
and cross-validated predictions at the individual patient
level.
Singular Value Decomposition (SVD) and generalized

SVD (GSVD) have been shown to have great potential
within bioinformatics for extracting common information
from data sets such as genomics and proteomics data
[9,10]. Several studies have used LS-SVM as a prediction
tool, especially in microarray analysis [11,12].
In this paper, we propose a machine learning approach

for data integration: a weighted LS-SVM classifier. Ini-
tially we will explain generalized eigenvalue decompo-
sition (GEVD) and kernel GEVD. Later we will explore
the relationships of kernel GEVD with weighted LS-SVM
classifier. Finally, the advantages of this new classifier
will be demonstrated on five breast cancer case studies,
for which expression data and an extensive collection of
clinical data are publicly available.

Data sets
Breast cancer is one of the most extensively studied can-
cer types for which many microarray data sets are publicly
available. Among them, we selected five cases for which
a sufficient number of clinical parameters were available
[3,13-16]. All the data sets that we have used are available
in the Integrated Tumor Transcriptome Array and Clini-
cal data Analysis database (ITTACA). Overview of all the
data sets are given in Table 1.

Microarray data
For the first three data sets, the microarray data were
obtained with the Affymetrix technology and prepro-
cessed with MAS5.0, the GeneChip Microarray Analy-
sis Suite 5.0 software (Affymetrix). However, as probe
selection for the Affymetrix gene chips relied on earlier
genome and transcriptome annotation that are signifi-
cantly different from current knowledge, an updated array
annotation was used for the conversion of probes to
Entrez Gene IDs, lowering the number of false positives
[17].
A fourth data set consists of two groups of patients [3].

The first group of patients, the training set, consists of
78 patients of which 34 patients belonged to the poor
prognosis group and 44 patients belonged to the good
prognosis group. The second group of patients, the test
set, consists of 19 patients of which 12 patients belonged
to the poor prognosis group and 7 patients belonged to the
good prognosis group. The microarray data was already
background corrected, normalized and log-transformed.
Preprocessing step removes genes with small profile vari-
ance, less than the 10th percentile.
The last data sets consists of transcript profiles of 251

primary breast tumors were assessed by using Affymetrix
U133 oligonucleotide microarrays. cDNA sequence anal-
ysis revealed that 58 of these tumors had p53 mutations
resulting in protein-level changes, whereas the remaining
193 tumors were p53 wt [16].

Clinical data
The first data of 129 patients contained information on
17 available clinical variables, 5 were excluded [13]: two
redundant variables that were least informative based
on univariate analysis in those variable pairs with a
correlation coefficient exceeding 0.7, and three vari-
ables with too many missing values. After exclusion
of patients with missing clinical information, this data
set consisted of 110 patients remained in 85 of whom
disease did not recur whilst in 25 patients disease
recurred.
The second data in which response to treatment was

studied, consisted of 12 variables for 133 patients [14].
Patient and variable exclusion as described above resulted
in this data set. Of the 129 remaining patients, 33 showed
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Table 1 Summary of the 5 breast cancer data sets

Case study #Samples #Genes #Clinical variables

Class 1 Class2

Case I 85 25 5000 Age, Ethnicity, ER status, PR status, Radiation treatment, Chemotherapy,

Hormonal therapy, Nodal status, Metastasis, Tumor stage,

Tumor size, Tumor grade.

Case II 33 96 6000 Age, Ethnicity, pretreatment tumor stage, nodal status,

nuclear grade, ER status, PR status, HER2 status.

Case III 112 65 5000 Age, Tumor size, Nodal status, ER status, Tamoxifen treatment.

Case IV 46 51 12192 Age, Tumor size, Grade, Erp, Angioinvasion, Lymphocytic Infiltrate, PRp.

Case V 58 193 20055 Age, Tumor size, Grade, ER, Prp, Lymph node.

complete response to treatment while 96 patients were
characterized as having residual disease.
In the third data, relapse was studied in 187 patients

[15]. After preprocessing, this data set retained informa-
tion on 5 variables for 177 patients. In 112 patients, no
relapse occurred while 65 patients were characterized as
having a relapse.
The fourth data [3] consisted of predefined training and

test sets same as that of corresponding microarray data.
The last data set consisted of 251 patients with 6 avail-
able clinical variables [16]. After exclusion of patients with
missing clinical information, this data set consisted of
237 patients of which 55 patients with p53 mutant breast
tumor and the remaining patients without p53 mutant
breast tumor.

Methods
In the first section, we will discuss about GEVD and rep-
resent it in terms of ordinary EVD. Then an overview of
LS-SVM formulation to kernel PCA and least squares sup-
port vector machines (LS-SVM) will be given. Next, we
formulate an optimization problem for kernel GEVD in
primal space and solution in dual space. Finally, by gen-
eralizing this optimization problem in terms of LS-SVM
classifier, we propose a new machine learning approach
for data fusion and classifications, a weighted LS-SVM
classifier.

Generalized Eigenvalue decomposition
The Generalized Singular Value Decomposition (GSVD)
ofm × N matrix A and p × N matrix B is [18]

A = U�AXT (1)

B = V�BXT (2)

whereU , V are orthogonal matrices and columns of X are
generalized singular vectors.

If BTB is invertible, then the GEVD ofATA and BTB can
be obtained from Equations (1) and (2) as follows:

ATA
(
XT

)−1 = BTB
(
XT

)−1
�. (3)

where � is a diagonal matrix with diagonal entries �ii =(
�Aii
�Bii

)2
, i = 1, . . . ,N .

Equation (3) can be represented in eigenvalue decom-
position (EVD) as follows:(

BTB
)−1/2

ATA
(
BTB

)−1/2
U = U�.

where U = (
BTB

)1/2 (
XT)−1 . The SVD of matrix

A
(
BTB

)−1/2 is given below:

A
(
BTB

)−1/2 = V�UT . (4)

The matrix
(
BTB

)−1/2 is defined [19] as follows: Let
EVD of BTB = T�TT , where columns of T are eigenvec-
tors and� is a diagonal matrix.

(
BTB

)1/2 = T�1/2TT and(
BTB

)−1/2 = TQTT , where Q is a diagonal matrix with
diagonal entries Qii = (�ii)−1/2, i = 1, . . . ,N .

LS-SVM formulation to Kernel PCA
An LS-SVM approach to kernel PCA was introduced in
[20]. This approach showed that kernel PCA is the dual
solution to a primal optimization problem formulated in
a kernel induced feature space. Given training set{xi}Ni=1,
xi ∈ R

d, the LS-SVM approach to kernel PCA is formu-
lated in the primal as:

min
w,ei,b

Jp(w, ei) = γ

2

N∑
i=1

e2i − 1
2
wTw,

such that ei = wTϕ(xi) + b, i = 1, . . . ,N , where b is a bias
term and ϕ(.): Rd → R

dh is the feature map which maps
the d-dimensional input vector x from the input space to
the dh-dimensional feature space.
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Kernel PCA in dual space takes the form:

�cα = λα

where α is an eigenvector, λ an eigenvalue and �c denotes
the centered kernel matrix with ijth entry: �c,i,j =
K

(
xi, xj

) − 1
N

∑N
r=1 K (xi, xr) − 1

N
∑N

r=1 K
(
xj, xr

) +
1
N2

∑N
r=1

∑N
s=1 K (xr , xs) , with K

(
xi, xj

) = ϕ (xi)T ϕ
(
xj

)
a

positive definite kernel function.

Least squares support vector machine classifiers
A kernel algorithm for supervised classification is the
SVM developed by Vapnik [21] and others. Contrary to
most other classification methods and due to the way data
are represented through kernels, SVMs can tackle high
dimensional data (for example microarray data). Given a
training set {xi, yi}Ni=1 with input data xi ∈ R

d and corre-
sponding binary class labels yi ∈ {−1,+1}, the SVM forms
a linear discriminant boundary y(x) = sign[wTϕ(x)+b] in
the feature space with maximum distance between sam-
ples of the two considered classes, withw representing the
weights for the data items in the feature space, b the bias
term and ϕ(.): Rd → R

n1 is the feature map which maps
the d-dimensional input vector x from the input space
to the n1-dimensional feature space. This corresponds to
a non-linear discriminant function in the original input
space. Vapnik’s SVM classifier formulation was modified
in [22]. This modified version is much faster for classi-
fication because a linear system instead of a quadratic
programming problem needs to be solved.
The constrained optimization problem for least squares

support vector machine (LS-SVM) [22,23] for classifica-
tion are defined as follows:

min
w,b,e

1
2
wTw + γ

1
2
�N

i=1e
2
i

subject to:

yi
[
wTϕ(xi) + b

]
= 1 − ei, i = 1, . . . ,N

with ei the error variables, tolerating misclassifications
in cases of overlapping distributions, and γ the regu-
larization parameter, which allows tackling the problem
of overfitting. The LS-SVM classifier formulation implic-
itly correspond to a regression interpretation with binary
target yi=±1.
In the dual space the solution is given by[

0 yT
y � + I

γ

] [
b
β

]
=

[
0
1N

]

with y = [
y1, . . . , yN

]T , 1N = [1, . . . , 1]T , e =
[e1, . . . , eN ]T , β = [β1, . . . ,βN ]T , �i,j = yiyjK

(
xi, xj

)
where K

(
xi, xj

)
is the kernel function.

The classifier in the dual space takes the form

y(x) = sign
[ N∑
i=1

βiyiK (x, xi) + b
]

where βi are Lagrange multipliers.

LS-SVM and kernel GEVD
LS-SVM formulations to different problems were dis-
cussed in [23]. This class of kernel machines emphasizes
primal-dual interpretations in the context of constrained
optimization problems. In this section we discuss LS-
SVM formulations to kernel GEVD, which is a non-linear
GEVD of m × N matrix A, and p × N matrix B, and a
weighted LS-SVM classifier.
Given a training data set of N points D ={
x(1)
i , x(2)

i , yi
}N
i=1

with output data yi ∈ R and input data

sets x(1)
i ∈ R

m, x(2)
i ∈ R

p (x(1)
i and x(2)

i are the ith sample
of matrices A and B respectively).
Consider the featuremaps ϕ(1)(.) :Rm →R

n1 and ϕ(2)(.):
R
p → R

n2 to a high dimensional feature space F , which is
possibly infinite dimensional. The centered feature matri-
ces 


(1)
c ∈ R

n1×N , 
(2)
c ∈ R

n2×N become


(1)
c =

[
ϕ(1)

(
x(1)
1

)T − μ̂T
(ϕ1)

; . . . ;ϕ(1)
(
x(1)
N

)T − μ̂T
(ϕ1)

]T


(2)
c =

[
ϕ(2)

(
x(2)
1

)T − μ̂T
(ϕ2)

; . . . ;ϕ(2)
(
x(2)
N

)T − μ̂T
(ϕ2)

]T
,

where μ̂ϕl = 1
N �N

i=1ϕ
(l)

(
x(l)
i

)
, l = 1, 2

LS-SVM approach to Kernel GEVD
Kernel GEVD is a nonlinear extension of GEVD, in which
data are first embedded into a high dimensional fea-
ture space introduced by kernel and then linear GEVD
is applied. While considering the matrix A(BTB)−1/2 in
Equation (4) and the feature maps ϕ(1)(.) :Rm → R

n1

and ϕ(2)(.) :Rp → R
n2 described in previous section, the

covariance matrix of A(BTB)−1/2 in the feature space

becomes C ≈ 

(1)
c

(



(2)T
c 


(2)
c

)−1



(1)T
c with eigende-

composition Cv = λv.
While considering kernel PCA formulation based on

the LS-SVM framework [24] was discussed in section
‘LS-SVM formulation to Kernel PCA’ and EVD ofCv = λv
in primal space, our objective is to find the directions in
which projected variables have maximal variance.
The LS-SVM approach to kernel GEVD is formulated as

follows:

min v,e J(v, e) = γ
1
2
eT

(

(2)T

c 
(2)
c

)−1
e − 1

2
vTv

such that e = 
(1)T
c v ,

(5)
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where v is the eigenvector in the primal space, γ ∈ R
+ is a

regularization constant and e are the projected data points
to the target space.
Defining the Lagrangian

L(v, e;α) = γ

2
e
T
e − 1

2
v
T
v − αT

{(
e − 
(1)T

c v
)}

,

with optimality conditions,

∂L
∂v

= 0 → v = 
(1)
c α

∂L
∂e

= 0 → α = γ
(

(2)T

c 
(2)
c

)−1
e

∂L
∂αi

= 0 → e = 
(1)T
c v,

elimination of v and e will yield an equation in the form of
GEVD

�(1)
c α = λ�(2)

c α,

where λ = 1
γ

largest eigenvalue, �
(1)
c , �

(2)
c are cen-

tered kernel matrices and α are generalized eigenvectors.
The symmetric kernel matrices �

(1)
c and �

(2)
c resolves

the heterogeneities of clinical and microarray data by the
use of kernel trick, where data which have diverse data
structures are transformed into kernel matrices with same
size.
In a special case of GEVD, if one of the data matrix is

identity matrix, it will be equivalent to ordinary EVD. If(



(2)T
c 


(2)
c

)−1 = I, then the optimization problem pro-
posed for kernel GEVD (See Equation (5)) will be equiv-
alent to optimization problem in [20] for the LS-SVM
approach to kernel PCA.

Weighted LS-SVM classifier
Our objective is to represent kernel GEVD in the form of
weighted LS-SVM classifier. Given the link between LS-
SVM approach to kernel GEVD in Equation (5) and the
weighted LS-SVM classifier (see [25] in a different type
of weighting to achieve robustness), one considers the
following optimization problem in primal weight space:

min v,e,b J(v, e) = γ
1
2
eT

(

(2)T

c 
(2)
c

)−1
e + 1

2
vTv

such that y = 
(1)T
c v + b1N + e,

with e = [e1, . . . , eN ]T a vector of variables to toler-
ate misclassifications, weight vector v in primal weight
space, bias term b and regularization parameter γ ∈ R

+.
Compared to the constrained optimization problem for
least squares support vector machine (LS-SVM) [22,23],
in this case, the error variables are weighted with a matrix(



(2)T
c 


(2)
c

)−1/2
.

The weight vector v can be infinite dimensional,
which makes the calculation of v impossible in gen-
eral. One defines the Lagrangian L (v, e, b;α) = 1

2v
Tv +

γ
2 e

T
(



(2)T
c 


(2)
c

)−1
e − αT

{((



(1)T
c v

)
+ b1N

)
+ e − y

}
,

with Lagrange multipliers α ∈ R
N .

∂L
∂v

= 0 → v = 
(1)
c α

∂L
∂b

= 0 → 1TNα = 0

∂L
∂e

= 0 → α = γ (
(2)T
c 
(2)

c )−1e

∂L
∂αi

= 0 → e + 
(1)T
c v + b = y

Elimination of v and e yields a linear system[
0 1TN
1N �

(1)
c + γ −1�(2)

c

] [
b
α

]
=

[
0
y

]
(6)

with y = [
y1, . . . , yN

]T , 1N = [1, . . . , 1]T , α =
[α1, . . . ,αN ]T , �(1)

c = 

(1)T
c 


(1)
c and �

(2)
c = 


(2)T
c 


(2)
c .

The resulting classifier in the dual space is given by

y(x) =
N∑
i=1

αi

([
K (1)(x, xi) + 1

γ
K (2)(x, xi)

]
+ b

)
(7)

with αi are the Lagrange multipliers, γ is a regular-
ization parameter has chosen by user, K (1)(x, z) =
ϕ(1)(x)Tϕ(1)(z), K (2)(x, z) = ϕ(2)(x)Tϕ(2)(z) and y(x) is
the output corresponding to validation point x. The LS-
SVM for nonlinear function estimation in [25] is similar to
the proposed weighted LS-SVM classifier.
The symmetric, kernel matrices K (1) and K (2) resolve

the heterogeneities of clinical andmicroarray data sources
such that they can be merged additively as a single ker-
nel. The optimization algorithm for the weighted LS-SVM
classifier is given below:

Algorithm: optimization algorithm for the weighted
LS-SVM classifier

1. Given a training data set of N points
D =

{
x(1)
i , x(2)

i , yi
}N
i=1

with output data yi ∈ R and

input data sets x(1)
i ∈ R

m, x(2)
i ∈ R

p.
2. Calculate Leave-One-Out cross validation

(LOO-CV) performances of training set with
different combinations of γ and σ1, σ2 (bandwidths
of kernel functions K (1), K (2)) by solving linear
system Equation (6) and Equation (7). In case the
Leave-One-Out (LOO) approach is computationally
expensive, one could replace it with a leave p group
out strategy (p-fold cross-validation).
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3. Obtain the optimal parameters combinations (γ , σ1,
σ2) which have the highest LOO-CV performance.

The proposed optimization problem is similar to the the
weighted LS-SVM formulation in [24] which replaced(



(2)T
c 


(2)
c

)−1
with a diagonal matrix to achieve sparse-

ness and robustness.
The proposed method is a new machine learning

approach in data fusion and subsequent classifications. In
this study, the advantages of a weighted LS-SVM classifier
were explored, by designing a clinical classifier. This clin-
ical classifier combined kernels by weighting kernel inner
product from one data set with that from the other data
set. Here we considered microarray kernels as weighting
matrix for clinical kernels. In each of these case studies,
we compared the prediction performance of individual
data sets with GEVD, kernel GEVD and weighted LS-
SVM classifier. In kernel GEVD, σ1 and σ2 are the band-
width of RBF-kernel function K(x, z) = exp

(
−||x−z||2

2σ 2

)
of clinical and microarray data sets respectively. These
parameters were chosen such that the pairs (σ1, σ2) which
obtained the highest LOO-CV performance. The param-
eter selection (see Algorithm) for the weighted LS-SVM
classifier are illustrated in Figure 1. For several possi-
ble values of the kernel parameters σ1 and σ2, the LOO
cross validation performance is computed for each pos-
sible combinations of γ . The optimal parameters are the

combinations (σ1, σ2, γ ) with best LOO-CV performance.
Remark the complexity of this optimization procedure
because both the kernel parameters (σ1 and σ2) and
γ need to be optimized in the sense of the LOO-CV
performance.

Results
In all case studies except fourth, 2/3rd of the data samples
of each class are assigned randomly to the training and
the rest to the test set. These randomization are the same
for all numerical experiments on all data sets. This split
was performed stratified to ensure that the relative pro-
portion of outcomes sampled in both training and test set
was similar to the original proportion in the full data set.
In all these cases, the microarray data were standardized
to zero mean and unit variance. Normalization of training
sets as well as test sets are done by using the mean and
standard deviation of each gene expression profile of the
training sets. In the fourth data set [3], all data samples
have already been assigned to a training set or test set.
Initially LS-SVM classifiers have been applied on indi-

vidual data sets: clinical and microarray. Then we per-
formedGEVDon training samples of clinical andmicroar-
ray data sets and obtained generalized eigenvectors
(GEV). Scores are obtained by projecting the clinical data
on to the directions of GEV. LS-SVMmodel is trained and
validated on scores corresponding to training set and test
set respectively.

Figure 1Overview of algorithm. The data sets represented as matrices with rows corresponding to patients and columns corresponding to genes
and clinical parameters respectively for first and second data sets. LOO-CV is applied to select the optimal parameters.
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Kernel GEVD
The optimal parameters of the kernel GEVD (band-
widths of clinical and microarray kernels) are selected
using LOO-CV performance. We applied kernel GEVD
on microarray and clinical kernels. Then we obtained
the scores by projecting clinical kernels on to the direc-
tion of kernel GEV. Similar to GEVD, LS-SVM model is
trained and validated on scores corresponding to train-
ing set and test set respectively. High-throughput data
such as microarray have used only for the model devel-
opment. The results show that considerations of two data
sets in a single framework improve the prediction perfor-
mance than individual data sets. In addition, kernel GEVD
significantly improve the classification performance over
GEVD. The results of the five case studies are shown
in Table 2 and Figure 2. We represent expression and
clinical data with kernelmatrix, based on RBF kernel func-
tion. The RBF kernel functions makes each of the these
data which has diverse structures, transformed into kernel
matrices with same size.

Weighted LS-SVM classifier
We proposed a weighted LS-SVM classifier, a useful tech-
nique in data fusion as well as in supervised learning. The
parameters (γ in Equation (6) and σ1, σ2 the bandwidths
of microarray and clinical kernel functions) associated
with this method are selected by Algorithm. In each LOO-
CV, 1 - samples are left out and models are built for all
possible combinations of parameters on the remaining
N − 1 samples. The optimization problem is not sensitive

to small changes of bandwidths of microarray and clini-
cal kernel functions. Careful tuning of γ allows tackling
the problem of overfitting and tolerating misclassifica-
tions. Models parameters are chosen corresponding to the
model with highest LOO AUC. The LOO-CV approach
takes less than a minute for a single iteration of the first
three case studies and 1-2 minutes for the rest of case
studies. Statistical significance test are performed in order
to allow a correct interpretations of the results. A non-
parametric paired test, the Wilcoxon signed rank test
(signrank in Matlb) [26], has been used in order to make
general conclusions. A threshold of 0.05 is respected,
which means that two results are significantly different
if the value of the Wilcoxon signed rank test applied to
both of them is lower than 0.05. On all case studies,
weighted LS-SVM classifier outperformed all other dis-
cussedmethods, in terms of test AUC, as shown in Table 2
and Figure 2. The weighted LS-SVM performance on sec-
ond and fourth cases slightly better, but not significantly,
than the kernel GEVD.
To compare LS-SVM with other classification meth-

ods, we have applied Naive Bayes classifiers individually to
clinical and microarray data. In this case, the normal dis-
tribution were used to model continuous variables, while
ordinal and nominal variables were modeled with a multi-
variate multinomial distribution. The average test AUC of
this method, when applied on five case studies are shown
in Table 3.
Then we compare the proposed weighted LS-SVM clas-

sifiers with other data fusion techniques which integrate

Table 2 Comparisons of different classifiers : test AUC(std) of breast cancer cases

Case I Case II Case III Case IV Case V

Classifiers

CL +LS-SVM

test AUC 0.7795(0.0687) 0.7772(0.0554) 0.6152(0.0565) 0.6622(0.0628) 0.7740(0.0833)

p-value 0.0039 1.48E-04 0.0086 5.21E-06 0.1602

MA+LS-SVM

test AUC 0.7001(0.0559) 0.8065(0.0730) 0.6217(0.0349) 0.7357(0.0085) 0.6166(0.0508)

p-value 0.0059 0.0140 0.0254 2.41E-04 0.0020

GEVD+LS-SVM

test AUC 0.7801(0.0717) 0.7673(0.0548) 0.6196(0.0829) 0.7730(0.1011) 0.8001(0.0648)

p-value 0.0137 3.41E-05 0.0040 0.1558 0.0840

KGEVD+LS-SVM

test AUC 0.7982(0.0927) 0.8210(0.0670) 0.6437(0.0313) 0.7901(0.0917) 0.8031(0.0624)

p-value 0.0195 0.1144 0.0020 0.6162 0.0720

weighted LS-SVM

test AUC 0.8177(0.0666) 0.8465(0.0480) 0.6985(0.0443) 0.8119(0.0893) 0.8210(0.0477)

p-value: a paired test, Wilcoxon signed rank test.
CL and MA are the clinical and microarray kernels of RBF kernel functions.
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Figure 2 Comparison of the prediction accuracy of the classifiers. Boxplots of the test AUC values obtained in 100 repetitions for 5 breast
cancer cases. (a) Case I (b) Case II (c) Case III (d) Case IV (e) Case V.
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Table 3 Naive Bayes classifiers performance on clinical andmicroarray data sets in terms of test AUC(std)

Data source Case I Case II Case III Case IV Case V

Clinical data 0.6235(0.0912) 0.739(0.0722) 0.5533(0.0438) 0.7156(0.0503) 0.6767(0.0513)

Microarray 0.5028(0.037) 0.6662(0.088) 0.5324(0.0616) 0.6011(0.0699) 0.5189(0.0412)

microarray and clinical data sets. Daemen et al. [7] inves-
tigated the effect of data integration on performance with
three case studies [13-15]. They reported that a better
performance was obtained when considering both clini-
cal and microarray data with the weights (μ) assigned to
them optimized (μClinical+(1-μMicroarray)). In addition
they concluded from their 10-fold AUC measurements
that the clinical kernel variant, led to a significant increase
in performance, in the kernel based integration approach
of clinical and microarray. The first three case studies, we
have taken from the work of Daemen et al. [7]. They have
considered the 200 most differential genes selected from
the training data with the Wilcoxon rank sum test, for the
kernel matrix obtained from microarray. The fourth case
study, we have taken from the paper of Gevaert et al. [2]
in which they investigated different types of integration
strategies, with Bayesian network classifier. They con-
cluded that partial integration performs better in terms
of test AUC. Our results also confirms that consideration
of microarray and clinical data sets together, improves
prediction performances than individual data sets.
In our analysis, microarray-based kernel matrix are cal-

culated on large data set without preselecting genes and
thus avoiding potential selection bias [27]. In addition, we
compared RBF kernel with the clinical kernel function [7]
on weighted LS-SVM classifier, in terms of LOO-CV per-
formance. Results are given on Table 4. We followed the
same strategy which was explained for weighted LS-SVM
classifier, except the clinical kernel function have been
used for the clinical parameters. On three out of five case
studies, RBF kernel functions performs better than clinical
kernel function.

Discussion
Integrative analysis has been primarily used to prioritize
disease genes or chromosomal regions for experimental
testing, to discover disease subtypes or to predict patient
survival or other clinical variables. The ultimate goal of
this work is to propose a machine learning approach
which is functional in both data fusion and supervised
learning. We further analyzed the potential benefits of

merging microarray and clinical data sets for prognostic
application in breast cancer diagnosis.
We integrate microarray and clinical data into one

mathematical model, for the development of highly homo-
geneous classifiers in clinical decision support. For this
purpose, we present a kernel based integration framework
in which each data set is transformed into a kernel matrix.
Integration occurs on this kernel level without referring
back to the data. Some studies [1,7] already reported that
intermediate integration of clinical and microarray data
sets improves prediction performance on breast cancer
outcome. In primal space, the clinical classifier is weighted
with expression values. The solution in dual space is given
on Equations (6) and (7) which provides a way to inte-
grate two kernel functions explicitly and perform further
classifications.
To verify the merit of the proposed approach over

the single data sources such as clinical and microarray
data, the LS-SVM were built on all data sets individ-
ually for classifying cancer patients. Next, GEVD and
kernel GEVD are performed. Then the projected vari-
ances in the new space (scores) have used to build the
LS-SVM. Finally weighted LS-SVM approach was used
for the integration of both microarray and clinical kernel
functions and performed subsequent classifications. Thus
weighted LS-SVM classifier proposes a new optimization
framework to solve the problem of classification using fea-
tures of different types such as clinical and microarray
data.
We should note that the models proposed in this paper

are expensive, but less than the other kernel-based data
fusion techniques. Since the proposed weighted LS-SVM
classifier simplified both data fusion and classification in
a single framework, it does not have an additional cost for
tuning parameters for kernel-based classifiers. And it is
given that, the weightingmatrix should be invertible in the
optimization problem of kernel GEVD and the weighted
LS-SVM classifier.
In life science research, there is an increasing need

for heterogeneous data integration such as proteomics,
genomics, mass spectral imaging and so on. Such studies

Table 4 Comparisons of RBF with clinical kernel functions in terms of LOO-CV performances

Kernel functions Case I Case II Case III Case IV Case V

Clinical kernel 0.8108(0.0351) 0.8315(0.0351) 0.7479(0.0111) 0.7385(0.1100) 0.7673(0.0213)

RBF 0.8243(0.0210) 0.8202(0.0100) 0.7143(0.0217) 0.7846(0.0699) 0.7862(0.0221)
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are required to determine, which data sets are most signif-
icant to be considered as weighting matrix. The proposed
weighted LS-SVM classifier integrates heterogeneous data
sets to achieve good performing and affordable classifiers.

Conclusion
The results suggest that the use of our integration app-
roach on gene expression and clinical data can improve
the performance of decision making in cancer. We pro-
posed a weighted LS-SVM classifier for the integration
of two data sources and further prediction task. Each
data set is represented with a kernel matrix, based on
the RBF kernel function. The proposed clinical classifier
gives a step towards improving predictions for individ-
ual patients about prognosis, metastatic phenotype and
therapy responses.
Because the parameters (bandwidth for kernel matrices

and regularization term γ of weighted LS-SVM) had to be
optimized, all possible combinations of these parameters
were investigated with a LOO-CV. Since these parameters
optimization strategy is time consuming, one can further
investigate a parameter optimization criterion for kernel
GEVD and weighted LS-SVM.
The applications of proposed method are not limited

to clinical and expression data sets. Possible additional
applications of weighted LS-SVM include integration of
genomic information collected from different sources
and biological processes. In short, the proposed machine
learning approach is a promising mathematical frame-
work in both data fusion and non-linear classification
problems.
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