42 research outputs found
Data repurposing from digital home cage monitoring enlightens new perspectives on mouse motor behaviour and reduction principle
: In this longitudinal study we compare between and within-strain variation in the home-cage spatial preference of three widely used and commercially available mice strains-C57BL/6NCrl, BALB/cAnNCrl and CRL:CD1(ICR)-starting from the first hour post cage-change until the next cage-change, for three consecutive intervals, to further profile the circadian home-cage behavioural phenotypes. Cage-change can be a stressful moment in the life of laboratory mice, since animals are disturbed during the sleeping hours and must then rapidly re-adapt to a pristine environment, leading to disruptions in normal motor patterns. The novelty of this study resides in characterizing new strain-specific biological phenomena, such as activity along the cage walls and frontality, using the vast data reserves generated by previous experimental data, thus introducing the potential and exploring the applicability of data repurposing to enhance Reduction principle when running in vivo studies. Our results, entirely obtained without the use of new animals, demonstrate that also when referring to space preference within the cage, C57BL/6NCrl has a high variability in the behavioural phenotypes from pre-puberty until early adulthood compared to BALB/cAnNCrl, which is confirmed to be socially disaggregated, and CRL:CD1(ICR) which is conversely highly active and socially aggregated. Our data also suggest that a strain-oriented approach is needed when defining frequency of cage-change as well as maximum allowed animal density, which should be revised, ideally under the EU regulatory framework as well, according to the physiological peculiarities of the strains, and always avoiding the "one size fits all" approach
Oral D-Aspartate Treatment Improves Sperm Fertility in Both Young and Adult B6N Mice
D-Aspartate (D-Asp) treatment improved the fertility of young male C57BL/6N mice in vivo revealing a direct role on capacitation, acrosome reaction, and fertility in vitro in young males only. We investigated whether the positive effect of D-Asp on fertility could be extended to adult males and evaluated the efficacy of a 2- or 4-week-treatment in vivo. Therefore, 20 mM sodium D-Asp was supplied in drinking water to males of different ages so that they were 9 or 16 weeks old at the end of the experiments. After sperm freezing, the in vitro fertilization (IVF) rate, the birth rate, hormone levels (luteinizing hormone (LH), epitestosterone, and testosterone), the sperm quality (morphology, abnormalities, motility, and velocity), the capacitation rate, and the acrosome reaction were investigated. Oral D-Asp treatment improves the fertilizing capability in mice regardless of the age of the animals. Importantly, a short D-Asp treatment of 2 weeks in young males elevates sperm parameters to the levels of untreated adult animals. In vivo, D-Asp treatment highly improves sperm quality but not sperm concentration. Therefore, D-Asp plays a beneficial role in mouse male fertility and may be highly relevant for cryorepositories to improve mouse sperm biobanking
Towards large scale automated cage monitoring - Diurnal rhythm and impact of interventions on in-cage activity of C57BL/6J mice recorded 24/7 with a non-disrupting capacitive-based technique.
BACKGROUND AND AIMS: Automated recording of laboratory animal\u27s home cage behavior is receiving increasing attention since such non-intruding surveillance will aid in the unbiased understanding of animal cage behavior potentially improving animal experimental reproducibility.
MATERIAL AND METHODS: Here we investigate activity of group held female C57BL/6J mice (mus musculus) housed in standard Individually Ventilated Cages across three test-sites: Consiglio Nazionale delle Ricerche (CNR, Rome, Italy), The Jackson Laboratory (JAX, Bar Harbor, USA) and Karolinska Insititutet (KI, Stockholm, Sweden). Additionally, comparison of female and male C57BL/6J mice was done at KI. Activity was recorded using a capacitive-based sensor placed non-intrusively on the cage rack under the home cage collecting activity data every 250 msec, 24/7. The data collection was analyzed using non-parametric analysis of variance for longitudinal data comparing sites, weekdays and sex.
RESULTS: The system detected an increase in activity preceding and peaking around lights-on followed by a decrease to a rest pattern. At lights off, activity increased substantially displaying a distinct temporal variation across this period. We also documented impact on mouse activity that standard animal handling procedures have, e.g. cage-changes, and show that such procedures are stressors impacting in-cage activity. These key observations replicated across the three test-sites, however, it is also clear that, apparently minor local environmental differences generate significant behavioral variances between the sites and within sites across weeks. Comparison of gender revealed differences in activity in the response to cage-change lasting for days in male but not female mice; and apparently also impacting the response to other events such as lights-on in males. Females but not males showed a larger tendency for week-to-week variance in activity possibly reflecting estrous cycling.
CONCLUSIONS: These data demonstrate that home cage monitoring is scalable and run in real time, providing complementary information for animal welfare measures, experimental design and phenotype characterization
Fractal analysis of microCT images of the oviduct during the estrous cycle
It is well known that the oviduct plays a key role in several events deeply related with reproduction, such as sperm storage and capacitation, gametes interactions, fertilization and early embryo development, among others. To better understand some of the interactions and process occurring withing this organ, the study of its morphological modifications is of primordial importance. To that, we adopted a microtomografy (MicroTC) modelling system and the fractal analysis that allow to explore the 3D oviductal functional anatomy, by using eight swine oviducts at different stages of the estrous cycle.
MicroCT datasets were acquired by using the high-resolution 3D-imaging system Skyscan 1172G (Bruker, Kontich – Belgium). CT images were analyzed using plugin on ImageJ software (NIH, Bethesda, MD), a box-counting method was applied to calculate the Fractal dimension of the oviduct. Focusing our attention on the utero-tubal junction (involved in sperm selection) and the isthmo-ampullar junction (the fertilization site).
We found that by using PCA analysis it was possible to clearly differentiate the oviduct at different cycle stage on the basis of their values for: Db for grid, lacunarity for grid, R2 for Db, Media Db, lacunarity, σ for D for Db, Max for D, Min for D. Lacunarity, Media and Max for Db have a greater influence on the analysis. The results showed that 2 principal components were associated whit the morphological changes.
This information, is obtained by a fast nondestructive method, and could be very useful because this innovative approach enables the achievement a 3D model and suggest that using fractal analysis techniques can aid to better understand the modifications of oviduct anatomy that depends on the neuroendocrine axis.
This innovative approach could be a start point to design 3D cell culture systems, that could be applied in human and animal assisted reproductive techniques, improving the IVF outcomes
Tendon Immune Regeneration: Insights on the Synergetic Role of Stem and Immune Cells during Tendon Regeneration
Tendon disorders represent a very common pathology in today’s population, and tendinopathies that account 30% of tendon-related injuries, affect yearly millions of people which in turn cause huge socioeconomic and health repercussions worldwide. Inflammation plays a prominent role in the development of tendon pathologies, and advances in understanding the underlying mechanisms during the inflammatory state have provided additional insights into its potential role in tendon dis-orders. Different cell compartments, in combination with secreted immune modulators, have shown to control and modulate the inflammatory response during tendinopathies. Stromal compartment represented by tenocytes has shown to display an important role in orchestrating the inflammatory response during tendon injuries due to the interplay they exhibit with the immune-sensing and infiltrating compartments, which belong to resident and recruited immune cells. The use of stem cells or their derived secretomes within the regenerative medicine field might represent synergic new therapeutical approaches that can be used to tune the reaction of immune cells within the damaged tissues. To this end, promising opportunities are headed to the stimulation of macrophages polarization towards anti-inflammatory phenotype together with the recruitment of stem cells, that possess immunomodulatory properties, able to infiltrate within the damaged tissues and improve tendinopathies resolution. Indeed, the comprehension of the interactions between tenocytes or stem cells with the immune cells might considerably modulate the immune reaction solving hence the inflammatory response and preventing fibrotic tissue formation. The purpose of this review is to compare the roles of distinct cell compartments during tendon homeostasis and injury. Furthermore, the role of immune cells in this field, as well as their interactions with stem cells and tenocytes during tendon regeneration, will be discussed to gain insights into new ways for dealing with tendinopathies
Scaffold-Mediated Immunoengineering as Innovative Strategy for Tendon Regeneration
Tendon injuries are at the frontier of innovative approaches to public health concerns and sectoral policy objectives. Indeed, these injuries remain difficult to manage due to tendon’s poor healing ability ascribable to a hypo-cellularity and low vascularity, leading to the formation of a fibrotic tissue affecting its functionality. Tissue engineering represents a promising solution for the regeneration of damaged tendons with the aim to stimulate tissue regeneration or to produce functional implantable biomaterials. However, any technological advancement must take into consideration the role of the immune system in tissue regeneration and the potential of biomaterial scaffolds to control the immune signaling, creating a pro-regenerative environment. In this context, immunoengineering has emerged as a new discipline, developing innovative strategies for tendon injuries. It aims at designing scaffolds, in combination with engineered bioactive molecules and/or stem cells, able to modulate the interaction between the transplanted biomaterial-scaffold and the host tissue allowing a pro-regenerative immune response, therefore hindering fibrosis occurrence at the injury site and guiding tendon regeneration. Thus, this review is aimed at giving an overview on the role exerted from different tissue engineering actors in leading immunoregeneration by crosstalking with stem and immune cells to generate new paradigms in designing regenerative medicine approaches for tendon injuries
Importing genetically altered animals : ensuring quality
The reproducibility of research using laboratory animals requires reliable management of their quality, in particular of their genetics, health and environment, all of which contribute to their phenotypes. The point at which these biological materials are transferred between researchers is particularly sensitive, as it may result in a loss of integrity of the animals and/or their documentation. Here, we describe the various aspects of laboratory animal quality that should be confirmed when sharing rodent research models. We also discuss how repositories of biological materials support the scientific community to ensure the continuity of the quality of laboratory animals. Both the concept of quality and the role of repositories themselves extend to all exchanges of biological materials and all networks that support the sharing of these reagents.Peer reviewe
Cx26 partial loss causes accelerated presbycusis by redox imbalance and dysregulation of Nfr2 pathway.
Mutations in GJB2, the gene that encodes connexin 26 (Cx26), are the most common cause of sensorineural hearing impairment. The truncating variant 35delG, which determines a complete loss of Cx26 protein function, is the prevalent GJB2 mutation in several populations. Here, we generated and analyzed Gjb2+/- mice as a model of heterozygous human carriers of 35delG. Compared to control mice, auditory brainstem responses (ABRs) and distortion product otoacoustic emissions (DPOAEs) worsened over time more rapidly in Gjb2+/- mice, indicating they were affected by accelerated age-related hearing loss (ARHL), or presbycusis. We linked causally the auditory phenotype of Gjb2+/- mice to apoptosis and oxidative damage in the cochlear duct, reduced release of glutathione from connexin hemichannels, decreased nutrient delivery to the sensory epithelium via cochlear gap junctions and deregulated expression of genes that are under transcriptional control of the nuclear factor erythroid 2-related factor 2 (Nrf2), a pivotal regulator of tolerance to redox stress. Moreover, a statistically significant genome-wide association with two genes (PRKCE and TGFB1) related to the Nrf2 pathway (p-value < 4\u202f
7 10-2) was detected in a very large cohort of 4091 individuals, originating from Europe, Caucasus and Central Asia, with hearing phenotype (including 1076 presbycusis patients and 1290 healthy matched controls). We conclude that (i) elements of the Nrf2 pathway are essential for hearing maintenance and (ii) their dysfunction may play an important role in the etiopathogenesis of human presbycusis
EMMA—mouse mutant resources for the international scientific community
The laboratory mouse is the premier animal model for studying human disease and thousands of mutants have been identified or produced, most recently through gene-specific mutagenesis approaches. High throughput strategies by the International Knockout Mouse Consortium (IKMC) are producing mutants for all protein coding genes. Generating a knock-out line involves huge monetary and time costs so capture of both the data describing each mutant alongside archiving of the line for distribution to future researchers is critical. The European Mouse Mutant Archive (EMMA) is a leading international network infrastructure for archiving and worldwide provision of mouse mutant strains. It operates in collaboration with the other members of the Federation of International Mouse Resources (FIMRe), EMMA being the European component. Additionally EMMA is one of four repositories involved in the IKMC, and therefore the current figure of 1700 archived lines will rise markedly. The EMMA database gathers and curates extensive data on each line and presents it through a user-friendly website. A BioMart interface allows advanced searching including integrated querying with other resources e.g. Ensembl. Other resources are able to display EMMA data by accessing our Distributed Annotation System server. EMMA database access is publicly available at http://www.emmanet.org
A large scale hearing loss screen reveals an extensive unexplored genetic landscape for auditory dysfunction
The developmental and physiological complexity of the auditory system is likely reflected in the underlying set of genes involved in auditory function. In humans, over 150 non-syndromic loci have been identified, and there are more than 400 human genetic syndromes with a hearing loss component. Over 100 non-syndromic hearing loss genes have been identified in mouse and human, but we remain ignorant of the full extent of the genetic landscape involved in auditory dysfunction. As part of the International Mouse Phenotyping Consortium, we undertook a hearing loss screen in a cohort of 3006 mouse knockout strains. In total, we identify 67 candidate hearing loss genes. We detect known hearing loss genes, but the vast majority, 52, of the candidate genes were novel. Our analysis reveals a large and unexplored genetic landscape involved with auditory function