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A B S T R A C T

Mutations in GJB2, the gene that encodes connexin 26 (Cx26), are the most common cause of sensorineural
hearing impairment. The truncating variant 35delG, which determines a complete loss of Cx26 protein function,
is the prevalent GJB2 mutation in several populations. Here, we generated and analyzed Gjb2+/− mice as a
model of heterozygous human carriers of 35delG. Compared to control mice, auditory brainstem responses
(ABRs) and distortion product otoacoustic emissions (DPOAEs) worsened over time more rapidly in Gjb2+/−

mice, indicating they were affected by accelerated age-related hearing loss (ARHL), or presbycusis. We linked
causally the auditory phenotype of Gjb2+/− mice to apoptosis and oxidative damage in the cochlear duct,
reduced release of glutathione from connexin hemichannels, decreased nutrient delivery to the sensory epi-
thelium via cochlear gap junctions and deregulated expression of genes that are under transcriptional control of
the nuclear factor erythroid 2-related factor 2 (Nrf2), a pivotal regulator of tolerance to redox stress. Moreover, a
statistically significant genome-wide association with two genes (PRKCE and TGFB1) related to the Nrf2 pathway
(p-value< 4× 10−2) was detected in a very large cohort of 4091 individuals, originating from Europe,
Caucasus and Central Asia, with hearing phenotype (including 1076 presbycusis patients and 1290 healthy
matched controls). We conclude that (i) elements of the Nrf2 pathway are essential for hearing maintenance and
(ii) their dysfunction may play an important role in the etiopathogenesis of human presbycusis.
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1. Introduction

Hearing impairment stands out as the most frequently occurring
congenital sensory deficit,2 with an estimated 1 in 650 newborns af-
fected [1]. Variants of the gap junction protein beta-2 (GJB2) gene, also
known as connexin 26 (Cx26),3 which include more than 340 missense,
nonsense, frameshift, insertions and deletions,4 take the lion share in
the spectrum of deafness–related mutations.5 The overwhelming ma-
jority of these mutations cause nonsyndromic autosomal recessive
deafness type 1A (DFNB1A, OMIM6 220290) [2,3], which accounts for
∼ 50% of all autosomal recessive nonsyndromic hearing impairment
cases7 and are responsible for hearing loss ranging from mild to pro-
found [4,5]. In several populations, the prevalent GJB2 mutation is
35delG [6,7], a truncating variant that determines a complete loss of
function for the encoded Cx26 protein, the structure of which has been
solved with a 3.5 Å resolution [8]. The non-sensory (epithelial and
supporting) cells of the cochlea that express Cx26, together with the
transcriptionally co-regulated connexin 30 (Cx30) encoded by the GJB6
gene [9], form two distinct cellular networks referred to as epithelial
and connective tissue gap junction system, respectively [10].

Despite the undisputed correlation between GJB2 and GJB6 variants
and hearing loss, the exact function of inner ear connexins and their
role in etiopathogenesis of deafness remain largely undetermined. Early
attempts to address this issue by mimicking the effect of Cx26 loss of
function in mice were ill-fated, as global deletion of Gjb2 results in
embryonic lethality due to impaired transplacental uptake of glucose
[11]. To overcome this problem, homozygous mice with floxed Gjb2
exon 2, abbreviated as Gjb2loxP/loxP, can be crossed either to a tissue-
specific Cre driver [12] or to an inducible global Cre deleter [13]. Cross-
breeding Gjb2loxP/loxP and Tg(Sox10-cre)1Wdr mice [14] yielded viable
homozygous offspring with targeted deletion of Cx26 in the epithelial
gap junction network of the cochlea, hereafter abbreviated as Gjb2−/−

and previously referred to as Cx26Sox10Cre [15,16]. Here, we examined
in greater detail both Gjb2−/− mice and their heterozygous Gjb2+/−

siblings. We report that both have increased levels of oxidative stress in
the cochlea. Whereas Gjb2−/− mice fail to acquire hearing [16,17], we
discovered that Gjb2+/− mice are affected by accelerated age-related
hearing loss (ARHL), or presbycusis [18,19], as their auditory perfor-
mance degraded more rapidly over time than in control mice (see
Section 3).

Our analyses linked reduced release of glutathione from connexin
hemichannels, apoptosis and oxidative damage in the cochlear duct to
decreased nutrient delivery to the sensory epithelium via cochlear gap
junctions and deregulated expression of genes that are under tran-
scriptional control of Nrf2, a redox-sensitive transcription factor that
plays a pivotal role in oxidative stress regulation [20]. In unstressed
cells, the Kelch-like ECH-associated protein 1 (KEAP1) and the Cullin-3-
dependent E3 Ubiquitin ligase form a complex (PDB: 5NLB)8 that re-
presses Nrf2 by promoting its ubiquitination and consequent protea-
somal degradation. Oxidative stress leads to modification of KEAP1
cysteine residues, reducing ubiquitination of bound Nrf2. Newly syn-
thesized Nrf2 is then capable of translocating to the nucleus, where it
induces the expression of an array of antioxidant response element
(ARE)–dependent genes, including Heme-oxygenase 1 (HO-1), super-
oxide dismutase (SOD), catalase (CAT), glutathione synthetase (GS),
glutathione reductase (GR), glutathione peroxidase (GPX) and glu-
tathione-S-transferase (GST) [21,22].

Based on the analysis of animal models, and thanks to the avail-
ability of a very large cohort of human subjects with presbycusis, we
decided to investigate further the role of oxidative stress genes using a
candidate gene approach [23]. We report here that some of the genes
controlled by the Nrf2/ARE pathway are also significantly associated
with hearing function and presbycusis in humans.

2. Materials and methods

2.1. Animals and genotyping

Animals were bread and genotyped in the CNR Monterotondo node
of the European Mouse Mutant Archive (EMMA) [24], an ESFRI/INF-
RAFRONTIER Distributed Research Infrastructure.9 Gjb2loxP/loxP mice
(Gjb2tm1Ugds/Gjb2tm1Ugds; MGI:2183509; EM:00245) [12] and Tg
(Sox10-cre)1Wdr mice (MGI:3586900) [14] were backcrossed for more
than 10 generations to C57BL/6N mice purchased from Taconic Bios-
ciences10 (MGI:2164831) and bred at CNR Monterotondo under Spe-
cific and Opportunistic Pathogen-Free (SOPF) conditions. C57BL/6N
was selected because it is the background strain for the International
Mouse Phenotyping Consortium (IMPC, of which CNR Monterotondo is
a member), which aims to produce and phenotype knockout mouse
lines for 20,000 genes.11 Genotyping protocols were performed by PCR
using the primers previously described [15,16]. Specifically, Gjb2−/−

mice (Gjb2tm1Ugds/Gjb2tm1Ugds Tg(Sox10-cre)1Wdr/0; MGI:5297177;
EM:11478) were identified by the presence of the two insertions, loxP
and Cre, by PCR on extracted mouse tail tips using the following pri-
mers:

Gjb2F 5’-TTTCCAATGCTGGTGGAGTG-3’,
Gjb2R 5’-ACAGAAATGTGTTGGTGATGG-3’,
CreF 5’-CATTACCGGTCGATGCA-3’,
CreR 5’-GAACCTGGTCGAAATCAG-3’.

Gjb2+/− mice were identified by the presence of Cre and loxP in-
sertions in one allele of the Gjb2 gene, whereas Gjb2loxP/loxP mice were
identified by the (absence of Cre and) presence of loxP insertion in both
alleles of Gjb2.

2.2. Gene expression analysis in mouse samples

Total RNA was extracted from cochlear tissue isolated from four
biological replicates for both genotypes, Gjb2−/− and Gjb2loxP/loxP,
using Qiagen miRNeasy Mini Kit (Qiagen, Hilden, Germay), and its
quantity and quality were assessed using the NanoDrop ND-1000
spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA) and
the Agilent 2100 Bioanalyzer microfluidic electrophoresis platform
(Agilent Technologies, Rome, Italy), respectively. Gene expression
profiles were investigated using the Agilent SurePrint G3 Mouse Gene
Expression v2 8× 60K Microarray (Agilent Technologies), according to
the One-Color Microarray-Based Gene Expression Analysis kit protocol
(Version 6.9.1). Raw signal values were thresholded to 1, log2 trans-
formed, normalized to the 75th percentile, and baselined to the median
of all samples using GeneSpringGX v.14.9 (Agilent Technologies). To
remove unreliable data, all genes from all samples were quality-filtered
to include only probes flagged “detected” in at least 100% of all samples
in one out of the two genotypes tested. Filtering data by quality-control
criteria short-listed 32,655 probes as our complete Data Set, out of a
total of 56745 probes present on the microarray. To assess the statistical
significance of gene expression changes in Gjb2−/− mice versus
Gjb2loxP/loxP age-matched controls, statistical analysis was performed by

2 https://www.ncbi.nlm.nih.gov/books/NBK1434/.
3 http://swissvar.expasy.org/cgi-bin/swissvar/result?global_textfield=gjb2

&findProteins=search.
4 http://deafnessvariationdatabase.org/letter/g, then select “GJB2”.
5 https://www.ncbi.nlm.nih.gov/books/NBK1434/.
6 Online Mendelia Inheritance in Men, https://www.omim.org/.
7 https://www.ncbi.nlm.nih.gov/books/NBK1272/.
8 https://www.rcsb.org/structure/5NLB.

9 https://www.infrafrontier.eu/.
10 https://www.taconic.com/.
11 http://www.mousephenotype.org/.
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using the GeneSpring GX software package (version 14.9, Agilent
Technologies). In particular, we used a moderate t-test and differen-
tially expressed genes with a p-value≤ 0.05 were deemed as significant
(Supplementary material, Data Set No.1). Genes with deregulated ex-
pression changes were screened for gene ontology and pathway en-
richment analyses (where Fisher's Exact with FDR multiple test cor-
rection p < 0.001, was applied) using specialized bioinformatics tools
and databases: Enrichr (http://amp.pharm.mssm.edu/Enrichr), In-
genuity Pathway Analysis (Qiagen) and MetaCore (Thomson Reuters,
Toronto, Canada). The subset of DEGs regulated by Nrf2 has been in-
ferred by MetaCore database annotations [25-28].

2.3. GSH release assay

Both cochleae from each P5 mouse pup were quickly dissected in
ice-cold Hepes buffered (pH 7.2) Hank’s Balanced Salt Solution (HBSS;
ThermoFisher, Cat. No. 14025050) and placed onto a 5mm glass cov-
erslip coated with Cell-Tak (Biocoat, Cat. No. 354240). Coverslips were
incubated overnight at 37 °C in DMEM/F12 (ThermoFisher, Cat. No.
11320-074) supplemented with 5% FBS (ThermoFisher, Cat. No.
10270-106) and 100 μg/ml ampicillin (Sigma-Aldrich, Cat. No. A0166).
The following day, complete DMEM was removed, cochlear cultures
were washed once with serum free DMEM, transferred (with their 5mm
coverslips) into a 96 well plate and allowed to rest for 30min at 37 °C
and 5% CO2. To perform the GSH release assay, cultures were incubated
for 40min at 37 °C and 5% CO2 with 120 µL of a solution containing
either 1.8mM Ca2+ (HC) or 0mM Ca2+ (LC) and (in mM): 137 NaCl,
5.36 KCl, 0.81 Mm MgSO4, 0.44 KH2PO4, 0.18 Na2HPO4, 0.1 EGTA, 25
HEPES and 5.55 Glucose, pH 7.3. To quantify the level of released
glutathione, 100 µL of supernatant was collected from each well and
transferred to a 96 well plate to be used in conjunction with a GSH/
GSSG Ratio Detection Assay kit (Fluorometric – Green, ab13881,
abcam, Cambridge Science Park, UK) based on a non-fluorescent dye
that becomes strongly fluorescent upon binding the released GSH.
Fluorescence was measured in a multi-well plate reader (Varioskan Lux,
Thermo Fisher Scientific) by exciting samples at 490 nm and detecting
fluorescence emission at 520 nm. GSH standard curves were generated
by serially-diluted concentrations of GSH and used to convert mea-
surements of fluorescence signals into GSH concentration.

2.4. Measurement of ABRs and DPOAEs

Auditory function was assessed in a sound-attenuating enclosure
(ETS-Lindgren SD Test Enclosure, MDL Technologies Limited, Hitchin,
U.K.) using an ABR Workstation (Tucker-Davis Technologies, Inc.,
Alachua, FL, U.S.A.) comprising: Z-Series 3-DSP Bioacoustic System w/
Attenuators and Optic fiber; Medusa 4-Channel Pre-Amp/Digitizer;
Medusa 4-Channel Low Imped. Headstage; MF1-M Multi Field Magnetic
Speakers – Mono; AEP/OAE Software for RZ6; Experiment Control
Workstation. Sound levels were calibrated using a ¼ in. Free Field
Measure Calibration Microphone Kit (Model 480C02; PCB).

Mice were anesthetized with intraperitoneal injections of ketamine
(70mg/g for males, 100mg/g for females) and medetomidine (1mg/g).
The depth of anesthesia was periodically verified by the lack of foot-
pinch response. Body temperature was maintained at 37 °C using a
heating pad under feedback control. Corneal drying was prevented by
application of ophthalmic gel to the eyes of the animals.

For ABR recordings [29], acoustic stimuli consisted of clicks (100
μsec duration) and tone bursts (1 ms rise–fall time with 3ms plateau) of
4, 8, 16, 24 and 32 kHz were delivered in the free field using a MF1-M
speaker. Bioelectrical potentials were collected with gauge 27, 13mm
needle electrodes (Cat. No. S83018-R9, Rochester) inserted sub-
dermally at the vertex (active), ventrolateral to the left ear (reference)
and above the tail (ground). Potentials were amplified, filtered
(0.3–3 kHz) and averaged over 512 presentations of the same stimulus.
Hearing threshold levels were determined offline as the sound pressure

level (SPL) at which a Wave II peak, could be visually identified above
the noise floor (0.1 μV).

Otoacoustic emissions [30,31] were evoked using a pair of equal
intensity primary tones, f1 = 14,544 Hz, and f2 = 17,440 kHz delivered
at intensities ranging from 20 to 80 dB SPL in 10 dB SPL increments.
Each primary tone (20.97 ms duration, 47/sec) was emitted by a se-
parate MF1-M speaker, configured for closed field stimulation, and
delivered to the mouse ear via a small tube as prescribed by the man-
ufacturer. The cubic distortion product 2f1 − f2 = 11,648 kHz, was
detected using a small microphone (ER10B+ Low Noise Probe and
Microphone, Etymotic Research, IL, U.S.A.) coupled to the ear canal.

After the final ABR test, animals were terminally anesthetized (ke-
tamine, 70 mg/g for males, 100mg/g for females and medetomidine
1mg/g), cochleae were quickly removed and samples were fixed with
4% paraformaldehyde in PBS at 4 °C and a pH 7.5. Next, cochleae were
decalcified for 3 days in EDTA 10%, incubated for 48 h in sucrose
(30%), embedded in OCT, cryosectioned at a thickness of 6 µm
(Cryostat SLEE), and processed as described hereafter.

2.5. Immunohistochemistry and confocal imaging

Specimens were included in 3% agarose dissolved in PBS and cut in
100 µm thickness steps using a vibratome (VT 1000 S, Leica Biosystems
Nussloch GmbH, Nussloch, Germany). Tissue slices were permeabilized
with 0.1% Triton X–100, dissolved in bovine serum albumin (BSA)2%
solution. Cx26 was immunolabeled by overnight incubation at 4 °C with
a mouse monoclonal anti-Cx26 selective antibody (10 μg/ml,
ThermoFisher, Cat. No. 335800). Secondary antibody (10 μg/ml) was
Alexa Fluor® 488 goat anti-mouse (IgG, ThermoFisher, Cat. No.
A11029), applied at room temperature (22–25 °C). F–Actin was stained
by incubation with AlexaFluor 568 phalloidin (1 U/ml, ThermoFisher,
Cat. No. A12380), and nuclei were stained with 4′,6–diamidino–2–-
phenylindole (DAPI, ThermoFisher, Cat. No. D1306) (1:200).

To quantify hair cell survival, cochleae were quickly dissected from
adult mice and tissue samples were fixed with 4% paraformaldehyde.
F–Actin was stained by incubation with ActinGreen 488 Ready Probes
Reagent (ThermoFisher, Cat. No. R37110).

All samples were mounted onto glass slides with a mounting
medium (FluorSaveTM Reagent, Merk, Darmstadt, Germany, Cat. No.
345789) and analyzed using a confocal microscope (TCS SP5, Leica,
Wetzlar, Germany) equipped with an oil–immersion objective (40×
HCX PL APO 1.25 N.A., Leica).

2.6. Hematoxylin Eosin staining

To quantify SGN survival, cochleae were quickly removed and
samples were fixed with 4% paraformaldehyde in PBS at 4 °C and a pH
7.5. Next, cochleae were decalcified for 3 days in 10% EDTA, incubated
for 48 h in sucrose (30%), embedded in OCT and cryosectioned at a
thickness of 6 µm (Cryostat CM 1950; SLEE, Mainz, Germany). The
sections were stained with hematoxylin and eosin (H&E) for the his-
tological assessment of ganglion neuronal cell damage, which is de-
pendent on viable and nonviable stained cells. A standard H&E protocol
was followed with a 4–5min incubation in hematoxylin and 45 s
staining in eosin then mounted with Entellan® (Cat. No. 107960,
Merck). The cross-sectional area of Rosenthal's canal was measured
using NIH Image. Viable neurons with a clear round nucleus and
homogeneous cytoplasm were then counted. The SGN density (cells per
square millimeters) was calculated using NIH ImageJ 1.43u (Image
Processing and Analysis in Java).

2.7. TUNEL Assay

TUNEL (APO-BrdU™ TUNEL Assay Kit, Cat. No. A23210,
ThermoFisher) was used to detect DNA fragmentation in the nuclei of
apoptotic cells in the organ of Corti and SGNs. The assay was performed

A.R. Fetoni et al. Redox Biology 19 (2018) 301–317

303

http://amp.pharm.mssm.edu/Enrichr


according to manufacturer’s instructions on cochlear cryosections from
Gjb2loxP/loxP and Gjb2+/− mice at 6 months of age (MoA). Cochleae
were quickly removed, and the samples were fixed with 4% paraf-
ormaldehyde in PBS at 4 °C and a pH 7.5. Next, cochleae were dec-
alcified for 3 days in 10% EDTA, incubated for 48 h in sucrose (30%),
embedded in OCT and cryosectioned at a thickness of 6 µm (Cryostat
CM 1950; SLEE). All procedures were performed under dim light.
Briefly, the specimens were incubated 3 h in ice-cold 70% (v/v) ethanol
and then incubated overnight at room temperature in freshly prepared
DNA-labeling solution. The specimens were rinsed twice in the rinse
buffer and then stained with Anti-BrdU mouse monoclonal antibody
PRB-1, Alexa Fluor 488 conjugate for 1 h at room temperature. The
slices were further stained with PI (Propidium Iodide, 1:100) for 20min
at room temperature. After rinsing in PBS, specimens were coverslipped
with an antifade medium (Pro Long Gold, Cat. No. P36930,
ThermoFisher). Cells with intense yellow-labeled nuclei (red plus
green) were identified as apoptotic cells.

2.8. Detection of ROS formation and lipid peroxidation

To assess oxidative damage level, we used dihydroethidium (DHE)
staining and 4-hydroxy-2-nonenal (4-HNE) immunostaining. DHE and
4-HNE (a by-product of lipid peroxidation) provided indications on
production of the toxic superoxide anion and oxidative degradation of
lipids generated by the effect of free radicals, respectively.

2.8.1. DHE assay
DHE is a lipophilic cell-permeable dye that is rapidly oxidized to

ethidium in the presence of free radical superoxide. In theory, the
produced ethidium is fixed by intercalation into nDNA; it gives an in-
dication of oxidant stress within cells undergoing investigation [32-34].
The cochlear specimens were incubated with 1mM DHE (Cat. No.
D23107, ThermoFisher) in PBS for 30min at 37 °C and then cover-
slipped with the antifade medium. The staining was imaged by two-
photon excitation (792 nm, 140 fs, 80MHz) performed by an ultrafast
tunable mode-locked titanium: sapphire laser (Chameleon; Coherent)
coupled to a multiphoton microscope (A1R MP+, Nikon). Images were
taken at 20×(Plan Apo objective, 0.75 N.A., Nikon).

2.8.2. 4-HNE assay
Specimens were incubated with a blocking solution (1% BSA, 0.5%

Triton X-100 and 10% normal goat serum in PBS 0.1M), thereafter
slices were incubated overnight at 4 °C with a solution containing rabbit
polyclonal anti4-HNE primary antibody (rabbit Anti4-HNE antiserum,
Cat#HNE11-S, Alpha Diagnostic Int., SanAntonio, USA) diluted 1:100
in PBS. All specimens were incubated at room temperature for 2 h in
label-conjugated goat anti-rabbit secondary antibody (Alexa Fluor 488,
IgG, Cat. No. A32731, ThermoFisher) diluted 1:400 in 0.1 M PBS and
additionally stained with DAPI (1:500 in 0.1M PBS). Images were ob-
tained with a confocal laser scanning system (Ti-E, Confocal Head A1
MP, Nikon, Japan). equipped with a 20x Plan Apo objective (0.75 N.A.,
Nikon). For each immunostaining procedure, control experiments (ne-
gative controls not shown) were performed by omitting the primary
antibody during processing of tissue randomly selected across experi-
mental groups. Tissues from all groups were always processed together
during the procedures to limit variability related to antibody penetra-
tion, incubation time, post-sectioning age, and condition of tissue.

2.9. Measurement of endogenous antioxidant defenses

2.9.1. Western Immunoblot
Total proteins were extracted from cochleae of Gjb2+/− and

Gjb2loxP/loxP animals at 2, 6 and 12 MoA. To extract sufficient protein,
cochleae were dissected, collected on ice and stored at − 80 °C.
Cochleae were pooled (n=8 for each genotype at each time point),
homogenized by using ice cold RIPA buffer (Pierce, Rockford, IL, USA,

Cat. No. PI89900, 50mM Tris, 150mM NaCl, 1 mM EDTA, 1% DOC, 1%
Triton X-100, 0.1% SDS and 1× protease, Cat. No. P8340 phosphatase-
1, Cat. No. P2850 and phosphatase-2 inhibitor cocktails, Cat. No P5726
[Sigma-Aldrich]). The lysate was sonicated 3 times at 10 Hz (Hielscher,
Ultrasound Technology UP50H/UP100H), centrifuged (13,000 rpm,
15min, 4 °C), and a 5-µL aliquot of the supernatant was assayed to
determine the protein concentration (microBCA kit, Cat. No. 23235,
Pierce, Rockford, IL, USA). Reducing sample buffer was added to the
supernatant, and samples were heated to 95 °C for 5min.

Samples used for GSH analyses were processed under non reducing
conditions to identify multiple bands at variable molecular weights in
order to detect all glutathionylated proteins [32]. Protein lysates
(70 μg) were loaded onto 4–15% Tris-glycine polyacrylamide gels for
electrophoretic separation. Colorburst™ Electrophoresis markers
(Sigma) were used as molecular mass standards. Proteins were then
transferred onto nitrocellulose membranes at 100 V for 2 h at 4 °C in
transfer buffer containing 25mM Tris (Cat. No. T4661, Sigma-Aldrich),
192mM glycine (Cat. No. G8898, Sigma-Aldrich), 0.1% SDS (Sodium
Dodecyl Sulfate, Cat. No. L3771, Sigma-Aldrich), and 20% me-
thanol (Cat. No. 322415, Sigma-Aldrich). Membranes were incubated
for 1 h with blocking buffer (5% skim milk [Cat. No. #1706404, Bio-
Rad Laboratories, Hercules, CA, USA] in TBST [Tris Buffered Saline,
Cat. No. T5912, Sigma-Aldrich and 0.1% Tween 20, Cat. No. P1379,
Sigma-Aldrich]), and then incubated overnight at 4 °C with the fol-
lowing primary antibodies: anti-Nrf2 (mouse monoclonal, 1:1000; Cat.
No. 89443 Abcam, Cambridge, MA, USA); anti HO-1 (rabbit polyclonal,
1:1000; Cat. No. ADI-SPA-896D StressGen Biotechnology, Victoria,
Canada); anti-GSH (mouse monoclonal, 1:1000; Cat. No 19534,
Abcam). After three 10-min rinses in TBST, membranes were incubated

Table 1
Transcriptomic and functional analysis of the P5 cochlea from Gjb2−/

−mice versus Gjb2loxP/loxP age-matched controls. The table lists the most
significant signaling cascades and ranks related genes for Metabolic Process
(GO:0008152) that were statistically altered (moderate t-test, p-value ≤ 0.05)
in Gjb2−/−mice and under transcriptional control of Nrf2. KO =Gjb2−/−; WT
=Gjb2loxP/loxP. For more details, please refer to Supplementary material, Data
Set No. 3.

Signaling pathway GeneSymbol p-value Fold change
([KO]/[WT])

Oxidative metabolism and
antioxidant defense systems

Rb1cc1 0.048 1.510
Prkce 0.041 1.578
Mef2c 0.035 1.693
Ep300 0.026 1.732
Atr 0.034 1.799
Nfatc3 0.023 1.915
Pten 0.010 2.053
Acox3 0.010 2.149
Nox4 0.018 2.783
Smad1 0.003 2.854

Glutathione metabolism Gpx3 0.005 − 2.202
Gss 0.041 − 1.816
Shmt2 0.048 − 1.570
Gstt2 0.035 1.747
Ahcyl2 0.047 2.116

MAPK Signaling Pathway Tgfb1 0.005 − 2.497
Map4k4 0.023 − 1.658
Snail1 0.024 − 1.656
Map3k11 0.047 − 1.509
Map3k1 0.036 1.609
Pdgfb 0.042 1.624
Mef2c 0.035 1.693
Mknk1 0.026 1.702
Map3k2 0.041 1.786
Mapk6 0.044 1.799
Map3k12 0.009 1.854
Rasa2 0.013 2.131
Nf1 0.040 2.676
Ikbkb 0.011 2.810
Mapk1 0.006 3.077
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for 1 h at RT HRP-conjugated mouse or rabbit secondary antibodies
(1:2500; Cat. No. 70765, Cell Signaling, Danvers, MA, USA). Equal
protein loading among individual lanes was confirmed by reprobing the
membranes with an anti-GAPDH mouse monoclonal antibody
(1:10,000; Cat. No. 9485, Abcam). The membranes were then washed,

and the bands were visualized with an enhanced chemiluminescence
detection kit (Cat. No. RPN2232, GE Healthcare, Cardif, UK). Protein
expression was evaluated and documented by using UVItec, Cambridge
Alliance. Values are expressed as Nrf2 and HO-1/GAPDH ratio. As re-
gard GSH, values are expressed as optical density of multiple bands at
all molecular weights.

2.9.2. Immunofluorescence analyses
Specimens were incubated with a blocking solution (1%BSA

[Bovine Serum Albumin, Cat. No. A9647, Sigma-Aldrich], 0.5% Triton
X-100 [Cat. No. T8787, Sigma-Aldrich] and 10% normal goat serum
[Cat. No. S26-M, Sigma-Aldrich] in PBS 0.1M), thereafter slices were
incubated overnight at 4 °C with a solution containing anti-GSH (Cat.
No. 19534, Abcam, Cambridge, MA, USA) or anti-HO-1 (Cat. No. ADI-
SPA-896D Stressgen, Victoria, Canada) and Nrf2 (Cat. No. 89443,
Abcam) primary antibodies diluted 1:100 in PBS. After washing in PBS,
samples were incubated at room temperature for 2 h in labeled con-
jugated goat anti-rabbit (HO-1) (Alexa Fuor 488 Cat. No. A-11034,
ThermoFischer, Waltham, MA, USA.) or donkey anti-mouse (GSH, Nrf2)
secondary antibody (Alexa Fluor 488, Cat. No. A- 21202; or Alexa Fluor
546, IgG, Cat. No. A 10036, ThermoFischer) diluted 1:400 in 0.1M PBS
and stained with DAPI stained (1:500 in 0.1M PBS).

2.10. Transfer assay for the non-metabolizable D-glucose analogue 2-NBDG

2-(N-(7-nitrobenz-2-oxa-1,3-dia-zol-4-yl)amino)-2-deoxyglucose (2-
NBDG, ThermoFisher Cat. No. N13195, MW = 342.3) is a fluorescent
glucose analogue that has been used to monitor glucose uptake in live
cells [35] and in the sensory epithelium of the cochlea [36]. Following
in vivo delivery as previously described [36], cochleae were rapidly
dissected in HBSS, supplemented with Cbx (100 µM) to limit dye escape
via open connexin hemichannels. The freshly explanted tissue was then
transferred on the motorized stage (Proscan III, Prior, Cambridge, UK)
of a laser scanning multiphoton confocal microscope (Bergamo 2,
Thorlabs, Ely, UK) equipped with water immersion objective (25×,
N.A. 1.05, XLPLN25XWMP2, Olympus, Tokyo, Japan) and coupled to a
femtosecond pulsed laser source (Camelion Ultra II, 680–1080 nm,
3.5W, Coherent). 2-NBDG fluorescence was excited at λ=890 nm and
detected with a Semrock 525/40 nm band bandpass filter (FF02-525/
40-25). Control experiments were performed by replacing 2-NBDG with
D-glucose (Sigma-Aldrich, Cat. No. D9434) in the injection buffer.
Images were stored in the computer hard disk for offline analysis. The

Fig. 1. GSH release assay in cochlear organotypic cultures from P5 Gjb2−/

− mice. A: Release of GSH during incubation of Gjb2loxP/loxP and Gjb2−/− co-
chlear cultures exposed to high Ca2+ (1.8 mM, HC) or low Ca2+ (0mM, LC)
solutions. B: Inhibition of GSH release by carbenoxolone (Cbx, 100 µM) in
Gjb2loxP/loxP cochleae. Data are mean ± s.e.m. for m=6 cochleae from n=3
mice in each condition; p-values were determined by two-tailed t-test.

Fig. 2. DHE and 4-HNE staining in cochlear
organotypic cultures from P5 Gjb2−/−

mice. A, B: Representative DHE staining in
confocal fluorescence images of midmodiolar
transversal cryosections from Gjb2loxP/loxP and
Gjb2−/− cochlear samples. D, E:
Corresponding 4-HNE expression. Scale bar:
100 µm. C, F: Fluorescence emission intensity
(A.U., arbitrary units) for DHE (C) and 4-HNE
(F). Data are mean ± s.e.m. for m=3 co-
chleae from n=3 mice in each condition; p-
values were determined by two-tailed t-test.
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fluorescent intensity of each area of interest was quantified with ImageJ
(version 1.51 s) and statistics were computed with a spread sheet (Mi-
crosoft Office Excel 2017, Version 1.30).

2.11. Analyses of human cohorts

2.11.1. Phenotypes and genotypes
An overall number of 4091 subjects aged more than 18 years with

hearing phenotype were included in Analysis 1. This cohort includes
also 2366 individuals used in the ARHL case-control study (Analysis 2:
1076 presbycusis patients and 1290 healthy matched controls). Among
them, 3032 subjects come from different isolated cohorts located in
Europe, Caucasus and Central Asia as previously described [37], while
1059 additional subjects belong to a Belgian cohort [38]. For Analysis
1, audiometric data collection and phenotypic criteria have been pre-
viously detailed [39]. For Analysis 2, the pure-tone average of air

conduction at high frequencies (4,8 kHz) (henceforth referred to as
PTAH) was computed and used to define case-control status with re-
spect to presbycusis. In particular, subjects aged 50 or older with PTAH
value greater than or equal to 40 dB were considered as ARHL-cases,
while subjects aged 50 or older with PTAH value lower than or equal to
25 dB were regarded as healthy controls [40]. ARHL-cases were con-
veniently selected excluding those individuals exposed to noise or with
a genetic history of hearing loss.

Genotype and phenotype data were obtained as previously de-
scribed [41,42,40]. Genotypes were then imputed as follows: the
phasing step was carried out using SHAPEIT2 [43], and IMPUTE2 [44]
was used to impute data to the 1000 Genomes Phase 1 v3 reference set
[45]. After the imputation phase, SNPs with info score (imputation
quality)< 0.4 and MAF< 0.01 were excluded.

Fig. 3. Auditory threshold evaluation by ABRs at 2, 6 and 12 MoA in Gjb2+/− mice. A–C: In vivo electrophysiological recordings (averaged threshold va-
lues ± s.e.m.) showing click responses and tone burst responses at 4, 8, 16, 24 and 32 kHz in Gjb2loxP/loxP (red squares) and Gjb2+/− mice (blue diamonds) at 2 (A),
6 (B) and 12 (C) MoA. The number of mice used was n=10 for each condition; p-values were determined by two-tailed t-test. D–F: Representative recordings of ABR
evoked by clicks in Gjb2loxP/loxP (red) and Gjb2+/− mice (blue) at 2 (D), 6 (E) and 12 (F) MoA; arrows indicate threshold level.
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2.11.2. Association analysis and meta-analysis
On each cohort, genome-wide association studies (GWAS) were

carried out for the normal hearing function (hearing threshold at
250 Hz, 500 Hz, 1 kHz, 2 kHz, 4 kHz and 8 kHz) and ARHL case-control
studies as described in Vuckovic et al. [39]. Methodology used were
GRAMMAR-Gamma method on genotyped SNPs and MixABEL on im-
puted ones, as available in the GenABEL suite. In particular, p-values
for the genotype-phenotype association shown in Table 5 were de-
termined using the Wald Chi-Squared test, as implemented in GenABEL
package [46]. Results from single cohorts were then pooled together
using METAL software [47], performing a fixed-effects meta-analysis
with inverse variance weights. Starting from a list of 29 human genes
orthologous to the murine ones defined in Table 1, a candidate gene
approach on the results from the GWAS meta-analysis was performed.
As a first step, for every analyzed trait, all polymorphisms with p-value
above nominal significance threshold were filtered out. Bonferroni
correction was then applied on the p-values of the remaining

polymorphisms.

2.12. Statistical analysis

For normally distributed data, statistical comparisons of means data
were made by Student’s two-tailed t-test [48] using a worksheet (Mi-
crosoft Office Excel 2017, Version 1.30), whereas ANOVA and post-hoc
comparison by Tuckey’s test [49] were used to analyze the differences
among group means using Statistica (version 6.0, Statsoft Inc.). The
same software was also used to perform the Mann-Whitney U test [50]
on data that did not require the assumption of normal distribution.
Mean values are quoted ± standard error of the mean (s.e.m.) where p-
values< 0.05 indicate statistical significance.

2.13. Study approval

The work described has been carried out in accordance with The

Fig. 4. Measurement of DPOAEs at 2, 6 and 12 MoA in Gjb2+/− mice. A-C: DPOAE recordings (mean ± s.e.m., see Section 2.4) in Gjb2loxP/loxP and Gjb2+/− mice
at 2 (A), 6 (B) and 12 (C) MoA. The number of mice used was n=10 for each condition; p-values were determined by two-tailed t-test. D–F: Representative DPOAE
spectra in Gjb2loxP/loxP mice (red) and Gjb2+/− mice (blue) at 2 (D), 6 (E) and 12 (F) MoA; insets show a magnified view of the spectrum in the region of the 2f1 − f2
cubic distortion product.
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Code of Ethics of the World Medical Association (Declaration of
Helsinki) for experiments involving humans. Informed consent was
obtained for experimentation with human subjects and the privacy
rights of human subjects was always be observed.

All animal procedures, including care and handling, were conducted
in accordance with the protocol approved by the Italian Ministry of
Health (Authorization n. 1005/2016-PR, date 21/10/2016, DGSAF
Prot. No. 002451-P-25/10/2016), in compliance with the ARRIVE
guidelines and the EU Directive 2010/63/EU for animal experiments.

3. Results

3.1. Lack of Cx26 contributes to a diminished antioxidant defense system in
the developing cochlea of Gjb2−/− mice

As mentioned in the Introduction, Gjb2−/− mice fail to acquire
hearing [16,17]. Cx26 immunoreactivity is absent in the epithelial gap
junction system of these mice, whereas Cx30 expression is devel-
opmentally delayed, such that immunoreactivity for both Cx26 and
Cx30 is negligible up to postnatal day 9 (P9, where P0 is date of birth)
[16]. To further characterize this mouse strain, we performed an initial
set of experiments using a oligonucleotide microarray platform.

Fig. 5. Gross morphology and apoptosis in
the organ of Corti at 6 MoA in Gjb2+/−

mice. A: Representative horizontal sections,
orthogonal to the modiolus, of cochleae from
Gjb2loxP/loxP and Gjb2+/− mice; images from
apical, medial and basal turns were obtained
by maximal intensity back–projection of 15
confocal optical sections from a 0.8 µm step
though–focus sequence (z–stack); actin fila-
ments were stained with ActinGreen 488
ReadyProbes (green); arrowheads indicate
missing outer hair cells; scale bar: 50 µm. For
data quantification, see Table 2. B: Maximal
projection rendering of two consecutive con-
focal optical sections taken at 0.6 µm intervals;
immunofluorescence staining shows Cx26 ex-
pression (green) in Deiters cells (DC), inner
sulcus (IS), outer sulcus (OS); nuclei were
stained with DAPI (blue), and actin filaments
with red conjugated phalloidin; OHCs, outer
hair cells; IHC, inner hair cell; gamma filters
were applied to both red (g = 0.65) and blue
(g = 0.75) channels; scale bar: 20 µm. C:
Confocal images of midmodiolar transversal
cryosections showing the organ of Corti of
Gjb2oxP/loxP and Gjb2+/− mice stained with
propidium iodide (red) and BrdUTP (green);
for data quantification, see Table 3.
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Specifically, we compared expression profiles of mRNAs in cochlear
tissue from Gjb2−/− pups at P5, taking age-matched Gjb2loxP/loxP mice
as controls. Our analysis revealed a total of 1733 genes (1942 probes
out of a total of 32655 probes that did pass quality control criteria)
showing deregulated expression changes in cochlear samples from
Gjb2−/− mice vs. Gjb2loxP/loxP mice (Supplementary material, Data Set
No.1; we note in passing that two connexin genes, GJA1 (Cx43) and
GJA3 (Cx46) are upregulated in this Data Set).

According to the Gene Ontology (GO) analysis, deregulated genes in
Gjb2−/− samples were mainly involved in metabolic process
(GO:0008152, 473 genes, p-value = 4.00× 10−7), cellular process
(GO:0009987, 644 genes, p-value = 2.35×10−6), and response to
stimulus (GO:0050896, 147 genes, p-value = 9.92× 10−7)
(Supplementary material, Data Set No.2 – Panel a). To focus on the
most significant signaling cascades and to investigate their role in the
context of pathways, we restricted the analysis to deregulated genes
associated with metabolic process and cellular process. We determined
that the majority of these deregulated genes in Gjb2−/− samples were
specifically involved in the MAPK signaling cascade (Map3k2, Mef2c,
Tgfb1, Map3k1, Pdgfb, Ikbkb, Mknk1, Rasa2, Nf1, Mapk1, Mapk6,
Map3k11, Map3k12, Map4k4, Snail1), oxidative metabolism and anti-
oxidant defense systems (Nox4, Rb1cc1, Mef2c, Ep300, Nfatc3, Prkce,
Pten, Smad1, Acox3, Atr), as well as glutathione metabolism (Ahcyl2,
Gpx3, Shmt2, Gss, Gstt2) (Supplementary material, Data Set No.2 –
Panel b).

Interestingly, several of these genes are under transcriptional con-
trol of Nrf2 (Table 1 and Supplementary material, Data Set No. 3),
supporting a key role for this transcription factor both in the control of
detoxifying and antioxidant defense processes and in the regulation of
glutathione metabolism [20-22]. Glutathione is a critically important

tripeptide thiol (γ-glutamyl cysteinyl glycine) that is found either in the
reduced sulfhydryl form (GSH) or in the glutathione disulfide (GSSG)
oxidized form. Reactive oxygen species (ROS), superoxide anion (O2.–),
hydroxyl radical (.OH), hydrogen peroxide (H2O2) and hydroperoxides
(R–OOH), as well as xenobiotics and other organic radicals, are neu-
tralized by GSH through a concerted cascade of detoxification me-
chanisms involving GPX, GST, GR and GST. In particular, GPX catalyzes
the reaction of GSH with H2O2, yielding GSSG and water; RG then re-
duce GSSG to GSH, completing the cycle [51,52].

In the brain, astrocytes contribute to neuronal detoxification from
ROS by releasing GSH [53] through plasma membrane hemichannels
formed by Cx43 [54]. Nonsensory cells of the inner ear bear important
similarities to glial cells. In particular, all cochlear supporting cells
express the glial fibrillary acidic protein (GFAP) marker early after
birth, in a gradient decreasing in intensity from the base to the apex of
the cochlea [55]. In addition, functional Cx26 hemichannels are present
on the surface of cochlear non-sensory cells [15,56-58], and Cx26
hemichannels reconstituted in liposomes are permeable to GSH [59].
Therefore, we reasoned that cochlear nonsensory cells could potentially
participate in detoxification from ROS by releasing GSH through Cx26
hemichannels, and this ability might be impaired in the developing

Table 2
Percentage of hair cell survival in the apical, middle and basal turn of cochleae
from Gjb2+/− and Gjb2loxP/loxP mice at 6 MoA (n= 4 mice of each genotype).
Shown are mean percent values, rounded to nearest integer, with standard
deviation (in round brackets) and p-values (in square brackets) of Gjb2+/−

samples relative to Gjb2loxP/loxP controls determined by the Mann-Whitney U
test.

Organ of
Corti

Outer hair cells survival (%) Inner hair cells survival (%)

Gjb2loxP/loxP Gjb2+/− Gjb2loxP/loxP Gjb2+/−

Apical turn 95 (3) 87 (5)
[p= 0.057]

100 (0) 98 (4)
[p= 0.41]

Middle turn 96 (2) 89 (1)
[p= 0.0015]

97 (4) 98 (4)
[p= 0.904]

Basal turn 99 (1) 86 (8)
[p= 0.028]

100 (0) 96 (2)
[p= 0.685]

Table 3
Percentage of apoptotic cells in the organ of Corti and spiral ganglion of co-
chlear apical, middle and basal turns from Gjb2+/− mice and Gjb2loxP/loxP

controls at 6 MoA (m=9 cryosections from n=3 mice of each genotype).
Shown are mean values computed over an area of 100 µm×100 µm, with
standard deviation (in round brackets) and p-values (in square brackets) of
Gjb2+/− relative to Gjb2loxP/loxP determined by the Mann-Whitney U test.

Apoptotic cells (%)

Gjb2loxP/loxP Gjb2+/−

Organ of Corti
Apical turn 8.3 (5.85) 47.75 (6.18) [p= 0.0002]
Middle turn 6.2 (3.9) 63.01 (19.9) [p= 0.0009]
Basal turn 2.94 (2.07) 61.30 (19.3) [p= 0.002]
SGNs
Apical turn 3.75 (2.01) 23.65 (6.82) [p= 0.002]
Middle turn 1.22 (1.73) 20.10 (4.85) [p= 0.001]
Basal turn 0.64 (1.28) 20.48 (1.11) [p= 0.0001]

Fig. 6. Gross morphology and apoptosis of SGNs at 6 MoA in Gjb2+/−

mice. A, B: Representative SGN Hematoxylin-Eosin staining in Gjb2loxP/loxP (A)
and Gjb2+/− samples (B). C, D: Confocal images of midmodiolar transversal
cryosections showing spiral ganglion neurons of Gjb2loxP/loxP (C) and Gjb2+/−

mice (D) stained with propidium iodide (red) and BrdUTP (green); scale bar:
50 µm. For data quantification, see Table 3.

Table 4
Total number of SGNs in m=9 cryosections from n=3 mice of each genotype
stained with hematoxylin & eosin. Shown are mean number of cells/mm2 with
standard deviation (round brackets) and p-values of Gjb2+/− relative to
Gjb2loxP/loxP (paired t-test, square brackets).

SGNs 6 months

Gjb2loxP/loxP Gjb2+/−

Apical turn 2606 (259) 1818 (278) [p=0.0008]
Middle turn 2728 (250) 1910 (499) [p=0.003]
Basal turn 2788 (277) 1730 (169) [p=0.0005]
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cochlea of Gjb2−/− mice.
To assay GSH release, we used a sensitive fluorescence-based assay

in cochlear organotypic cultures from P5 mice (see Section 2) while
lowering the extracellular concentration of Ca2+ ([Ca2+]e) from
1.8 mM (HC) to 0mM (LC), which increases the open probability of
most hemichannels [60,61]. As shown in Fig. 1, the amount of GSH
released in LC conditions was significantly lower in Gjb2−/− cultures
than in Gjb2loxP/loxP controls (Fig. 1A). GSH release was blocked by
carbenoxolone (Cbx, 100 μM), the best known and widely used, albeit
non-specific, inhibitor of connexin channels [62] (Fig. 1B).

Based on these results, we predicted that the combined effect of
deregulated genes in cochlear samples (Table 1 and Supplementary
material, Data Set No. 3) and reduced GSH release (Fig. 1) should lead
to increased levels of oxidative stress in the cochlea of Gjb2−/− pups.
To test this hypothesis, we performed staining of P5 cochlear mid-
modiolar transversal section with dihydroethidium (DHE), a lipophilic

cell-permeable dye that is rapidly oxidized to ethidium in the presence
of superoxide free radical [63] (Fig. 2A–B). Quantitative image analysis
performed over triplicate replicas for each genotype revealed a sig-
nificantly higher DHE signal in cochlear duct structures obtained from
P5 Gjb2−/− mice compared to age-matched Gjb2loxP/loxP controls (p-
value = 0.047, two-tailed t-test; Fig. 2C). We also performed im-
munostaining of 4-hydroxy-2-nonenal (4-HNE), a lipid peroxydation
product [64] (Fig. 2D–E), but did not detect significant differences for
this marker at this early stage of development (Fig. 2F). A statistically
significant increase in the intracellular level of ROS was reported also in
the cochlea of deaf Gjb6tm1Kwi/Gjb6tm1Kwi mice [36] (EM:00323;
MGI:2447863),12 in which Cx30 is deleted globally [65] and cochlear
Cx26 is reduced to ∼ 10% compared to wild type controls [9,66].

Fig. 7. Exacerbated age-induced oxidative stress in the cochlea of Gjb2+/− mice. A: Representative confocal fluorescence images of DHE staining in mid-
modiolar transversal cryosections of Gjb2loxP/loxP and Gjb2+/− samples at 2, 6 and 12 MoA B: Corresponding 4-HNE expression, showing lipid peroxidation in
Gjb2loxP/loxP and Gjb2+/− samples at 2, 6 and 12 MoA; Scale bar: 100 µm. C, D: Histograms (mean ± s.e.m.) represent fluorescence intensity values (A.U., arbitrary
units). P-values were determined by two-tailed t-test; n= 3 mice were used for each condition.

12 Also known as: Cx30−/− or Cx30-LacZ.
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Therefore, these results strongly suggest that lack of Cx26 in the epi-
thelial gap junction network contributes to a diminished antioxidant
defense system in the developing cochlea of Gjb2−/− mice. They pro-
vide also a putative mechanistic interpretation for the previously re-
ported increase of cell death in the cochlear sensory epithelium of
Gjb2−/− mice, which leads to complete loss of outer hair cells (OHCs)
in the basal cochlear turn of these deaf mice by P30 [16]. Consistent
with this conclusion, high frequency OHCs were shown to be particu-
larly vulnerable to oxidative stress due to their elevated mitochondrial
metabolism [67].

3.2. Accelerated presbycusis and increased oxidative stress in Gjb2+/−

mice

In the subsequent set of experiments, we sought to determine
whether oxidative stress affects auditory function also in heterozygous
Gjb2+/– mice (Fig. 3). By measuring auditory brainstem responses
(ABRs) to clicks and pure tone stimuli [29] at various ages (see Section
2), we found that hearing thresholds (Fig. 3A–C) estimated from Wave
II amplitudes (Fig. 3D–F) were already slightly increased at 2 months of
age (MoA) in Gjb2+/− mice compared to Gjb2loxP/loxP controls (Fig. 3A,
D). At 6 MoA, the differences were significant for click responses and at
8, 16 and 32 kHz (Fig. 3B, E). By 12 MoA, also Gjb2loxP/loxP animals
displayed signs of presbycusis, however hearing thresholds of Gjb2+/−

mice remained significantly more elevated for click responses and

across the entire auditory spectrum examined (Fig. 3C, F). No differ-
ences were found between male and female Gjb2+/− and Gjb2loxP/loxP

mice (Supplementary material, Fig. S1 and Table S1). Tg(Sox10-cre)
1Wdr mice [14] and C57BL/6N mice (the genetic background shared by
all animals in this study) showed a trend of age-related hearing loss in
accord with a previous study which included C57BL/6N mice [68] and
comparable to that of Gjb2loxP/loxP animals (Supplementary material,
Fig. S2).

Measurement of distortion product otoacoustic emissions (DPOAE)
[30,31] exhibited a significantly flatter growth function of the cubic
(2f1 − f2) distortion product in Gjb2+/− mice at 2 and 6 MoA (Fig. 4),
indicating that OHCs dysfunction contributed to the observed hearing
impairment. These functional deficits correlated with a small but sig-
nificant increase of OHC loss in Gjb2+/− cochleae at 6 MoA (Fig. 5A
and Table 2). In addition, confocal immunofluorescence analysis of
midmodiolar transversal sections revealed a dramatic flattening of the
sensory epithelium in the outer sulcus region (Fig. 5B), as well as a
significantly increased fraction of apoptotic nuclei in the organ of Corti
of Gjb2+/− cochleae (Fig. 5C and Table 3). Tight junctions in the su-
perficial layer of the cochlear sensory epithelium maintain cell polarity
by providing a boundary between the apical and basolateral plasma
membrane domains [69]. Therefore, these results suggest that dimin-
ished resistance to oxidative stress due to insufficient gap junction
coupling might affect also tight junction stability, as reported in other
systems [70,71].

Fig. 8. Decreased levels of endogenous antioxidant defenses in the cochlea of Gjb2+/− mice. A: Western blot analysis of Nrf2 and HO-1 expression in Gjb2loxP/
loxP and Gjb2+/− cochleae (n=8 for each condition) at 2, 6 and 12 months of age (M). B, C: Histograms (mean ± s.e.m.) represent optical density values normalized
to GAPDH. Experiments were performed in triplicate and p-values were determined by two-tailed t-test. D: Immunofluorescence analysis of Nrf2 (upper panels, red
fluorescence) and HO-1 expression (lower panels, green fluorescence) in the organ of Corti (oC), spiral ganglion neurons (SGNs) and stria vascularis (StV) at 6 months
(M). Scale bars: oC, 20 µm; SGNs, 15 µm; StV, 50 µm.
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Degeneration of spiral ganglion neurons (SGNs), the first relay sta-
tion of the afferent auditory pathway that conveys sensory information
from organ of Corti hair cells to the central nervous system [72], is a
hallmark of ARHL in mice [73]. As shown in Fig. 6, we detected loss of
SGNs in Gjb2+/− mice due to significantly increased apoptosis at 6 and
12 MoA (Table 3 and Table 4; see also Supplementary material, Fig. S3
and Table S3). Staining of cochlear samples with DHE (Fig. 7A) and 4-
HNE (Fig. 7B) revealed a time-dependent increase of both signals in the
cochlear partition, stria vascularis and SGNs of Gjb2+/− mice at 2, 6 and
12 MoA. Quantitative image analysis showed that differences between
cochlear tissue from Gjb2+/− mice and Gjb2loxP/loxP controls were sig-
nificant at all 3 time points for DHE, but only at 6 MoA for 4-HNE.
Together, these results confirm that apoptosis and accelerated presby-
cusis correlate with increased levels of oxidative stress in the cochlea of
Gjb2+/− mice.

The Nrf2/ARE-controlled HO-1 enzyme, which contributes to redox
homeostasis by catalyzing the oxidation of heme to biliverdin, free iron
and carbon monoxide [20], has been previously implicated in protec-
tion of cochlear oxidative damage induced by noise exposure [32]. As
shown in Fig. 8, we analyzed Nrf2 and HO-1 expression by western
immunoblotting, and determined that levels of both markers were re-
duced in Gjb2+/− mice, compared to Gjb2loxP/loxP controls at 2 and 6
MoA and differences were significant at 6 MoA (Fig. 8A–C). To corro-
borate these findings, we performed image analysis of Nrf2 and HO-1
immunoreactivity in the cochlea at 6 MoA, and found reduced levels of

both markers in the organ of Corti, SGNs and stria vascularis of Gjb2+/

−specimens (Fig. 8D). Finally we quantified the levels of cochlear
glutathionylated proteins of different molecular weights under non
reducing conditions by western blot analysis, and found significantly
decreased levels of these proteins in Gjb2+/−specimens at 2, 6 MoA
compared to age-matched Gjb2loxP/loxP controls (Fig. 9A, B). At 6 MoA,
immunofluorescence analysis localized the decrease of glutathionylated
proteins mainly in SGNs, organ of Corti, and stria vascularis (Fig. 9C).

In the brain, intercellular coupling via astrocytic gap junctions
provides an activity-dependent intercellular pathway for the delivery of
nutrients from blood vessels to distal neurons [74]. A similar role has
been proposed for epithelial and connective tissue gap junction system
of the cochlear duct [36], which are thought to supply sensory hair cells
of the avascular sensory epithelium with nutrients derived from blood
vessel networks in stria vascularis, spiral ligament and spiral limbus [75-
77]. Nutrient deficiency impacts on ATP production, leading to ROS
overload and apoptosis [78]. Therefore, we hypothesized that reduced
expression of Cx26 in the cochlea of Gjb2+/− mice might promote
oxidative damage by diminishing nutrient availability. To test this hy-
pothesis, we used a non-metabolizable D-glucose analogue, 2-NBDG
[35], as previously described [36]. As shown in Fig. 10, post-injection
analysis of freshly dissected cochlear tissue revealed a significant re-
duction of 2-NBDG fluorescence emission in the stria vascularis of
Gjb2+/− mice compared to age-matched Gjb2loxP/loxP controls.

Fig. 9. Decreased levels of glutathionylated proteins in the cochlea of Gjb2+/− mice. A, B: Western blot analysis of glutathionylated proteins in Gjb2loxP/loxP and
Gjb2+/− cochleae (n=8 for each condition) at 2, 6 and 12 months of age (MoA). A: Representative immunoreactive bands showing a decrease of glutathionylated
proteins at different molecular weights under non reducing conditions in Gjb2+/− mice. B: Quantitative analysis of optical density values evaluated at all molecular
weights (mean ± s.e.m.). Experiments were performed in triplicate and p-values were determined by two-tailed t-test. C: Representative images of spiral ganglion
neurons (SGNs), organ of Corti (oC) and stria vascularis (StV) with double labeling for GSH (green fluorescence) and DAPI staining (blue fluorescence) in Gjb2loxP/loxP

and Gjb2+/− mice at 6 MoA. Scale bar: oC, 20 µm; SGNs, 30 µm; StV, 50 µm.
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3.3. The Nrf2/ARE-pathway is altered in human cohorts with presbycusis

Together, the results presented above link causally development of
presbycusis in Gjb2+/− mice, apoptosis and oxidative damage in the
cochlear duct and spiral ganglion to reduced release of glutathione from
connexin hemichannels, decreased nutrient delivery via cochlear gap
junctions and deregulated expression of genes that are under tran-
scriptional control of Nrf2.

In a recent work, a single nucleotide polymorphism (SNP,
rs6721961) in the NRF2 promoter, which reduces the transcription
level of the NRF2 gene, showed significant association with impaired
hearing in a human cohort exposed to occupational noise [79]. This
finding and the results described above prompted us to investigate
whether genes in the NRF2/ARE-pathway show significant association
with human hearing function and presbycusis traits. Thus, a GWAS
analysis was carried out in a large cohort of 4091 individuals, origi-
nating from Europe, Caucasus and Central Asia, with hearing pheno-
type (including 1076 presbycusis patients and 1290 healthy matched
controls). Analyzing normal hearing function traits (i.e. frequencies and
thresholds thus a quantitative analysis) (Analysis 1, see Section 2), a
statistically significant result was obtained at the 1 kHz hearing

threshold. In particular, 433 polymorphisms showed a p-value below
nominal significance and one, rs7570049, located in PRKCE gene, was
significantly associated after the Bonferroni correction (p-value =
2.20E-02). Analyzing the ARHL phenotype (i.e. cases vs. controls, thus a
qualitative analysis; Analysis 2, see Section 2), 445 polymorphisms
displayed a p-value below nominal significance threshold and four out
of 445 were significantly associated after Bonferroni correction. Two
polymorphisms (rs12613391, rs5839661) were located in PRKCE gene,
while the remaining ones (rs12980839, rs8109627) in TGFB1 gene.
Interestingly, all five SNPs showed the same direction of the effect
across all tested populations (beta value reported in Table 5), indicating
an overall better hearing threshold (Analysis 1) and a reduced ARHL
disease risk (Analysis 2) for carriers of the alternative allele thus sug-
gesting a protective effect in the etiopathogenesis of presbycusis
(Table 5).

Interestingly, one SNP (rs12980839) located within TGFB1 gene is
also included among the expression quantitative trait loci (eQTL) in the
Genotype-Tissue Expression (GTEx) database [80]. Briefly, it shows a
highly significant p-value (9.5× 10−9) indicating a decrease in gene
tissue expression for homozygous subjects carrying the alternative al-
lele compared to those with the reference allele. Overall, results from
our population-based studies (i) show a statistically significant asso-
ciation with two genes (PRKCE and TGFB1) related to the NRF2
pathway (p-value< 4× 10−2), (ii) further support the hypothesis that
elements of the NRF2 pathway are essential for hearing maintenance
and (iii) suggest that their dysfunction may play an important role in
the etiopathogenesis of presbycusis.

4. Discussion

4.1. Consequences of targeted genetic ablation of Gjb2 in the epithelial gap
junction system of the mouse cochlea

In the present study, we initially compared whole-genome expres-
sion profiles in the developing cochlea of Gjb2−/−mice, which fail to
acquire hearing [16], to age-matched Gjb2loxP/loxP controls, which hear
normally at 2 MoA and thereafter exhibit the same hearing loss pro-
gression of their genetic background (C57BL/6N; see Ref. [68] and
Supplementary material, Figs. S1–2 and Tables S1–2). This search
identified a total of 1733 genes with deregulated expression changes in
P5 Gjb2−/− pups (Supplementary material, Data Set No.1). Functional
enrichment analysis of deregulated genes (Supplementary material,
Data Set No.2) showed that they were mainly involved in several pro-
cesses, including MAPK signaling cascade, glutathione metabolism and
antioxidant defense systems (Table 1 and Supplementary material, Data
Set No.3), suggesting that these pathways may crosstalk with each other
to drive hearing loss and cochlear degeneration. Our analysis also un-
veiled a number of differentially expressed genes associated to glu-
tathione and/or oxidative metabolism, which are under transcriptional
control of Nrf2. Disruption of Nrf2 signaling is associated with an in-
creased susceptibility to oxidative insults and other toxicants in humans
and model organisms [81-83]. In addition, this transcription factor has

Fig. 10. 2-NBDG uptake and diffusion in the stria vascularis of Gjb2+/−

mice. A–C: Representative fluorescence images of freshly dissected stria vas-
cularis following injection of 2-NBDG (A, B) or D-glucose (C) dissolved in DPBS.
Each image is the maximum fluorescence intensity projection of a through-
focus sequence (z-stack, 20 frames, 2.0 µm increment) acquired with a custo-
mized two-photon microscope (see Section 2). Scale bar: 25 µm. D: Quantifi-
cation of 2-NBDG fluorescence intensity (A.U., arbitrary units) in stria vascularis
of Gjb2loxP/loxP and Gjb2+/− samples. Data are mean ± s.e.m. for m=3 co-
chleae from n=3 mice in each condition; p-values were determined by two-
tailed t-test.

Table 5
Results of candidate human gene association analyses. SNP: Analyzed polymorphism; Gene: Gene name; Chr: Chromosome; Position: Genomic position (GRCh37);
Ref. Allele: Reference allele (allele reported in GRCh37); Alt. Allele: Alternative allele compared to the reference allele; N: Overall number of subjects considered in
the analysis for the specific SNP; beta: Effect size – beta coefficient of the regression line, in which genotype at the SNP is used as a predictor of case-control status/
hearing threshold; p-value: P-value of the association test; Adjusted p-value: P-value of the association test, after the Bonferroni correction; An. Trait: Analyzed trait;
HT: Hearing threshold at 1 kHz (quantitative trait regression analysis); Pres: Presbycusis (case-control analysis). See Section 2.

SNP Gene Chr Position Ref. Allele Alt. Allele N beta p-value Adjusted p-value An. trait

rs12613391 PRKCE 2 46,301,750 G A 2366 − 0.080160009 5.87E − 05 2.61E − 02 Pres
rs58396617 PRKCE 2 46,303,933 G A 2366 − 0.085993931 4.37E − 05 1.95E − 02 Pres
rs12980839 TGFB1 19 41,820,213 G A 2366 − 0.05430617 9.51E − 05 4.23E − 02 Pres
rs8109627 TGFB1 19 41,822,986 T C 2366 − 0.052945143 9.97E − 05 4.44E − 02 Pres
rs7570049 PRKCE 2 45,927,312 C G 4091 − 0.01590765 5.07E − 05 2.20E − 02 HT
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been recently identified as a key target for prevention of noise-induced
oxidative damage and consequent hearing loss [79]. Increased levels of
oxidative stress were detected also in C57BL/6J mice [84], the most
frequently used animal model of presbycusis [85,68,86]. Furthermore,
the senescence-accelerated mouse prone 8 (SAMP8) strain displays
premature hearing loss and cochlear degeneration associated with
oxidative stress, chronic inflammation and apoptotic cell death [87].
Thus, oxidative stress and alterations in the expression or function of
Nrf2/ARE-controlled genes appear to contribute critically to the etio-
pathogenesis of hearing impairment in mouse models of deafness. On
the basis of our results, we hypothesized that: (i) down-regulation of the
glutathione synthetase GSHB could reduce glutathione production; (ii)
down-regulation of the glutathione peroxidase GPX3 could reduce the
transformation of GSH into GSSG; (iii) up-regulation of the glutathione
S-transferase theta2 (GSTT2) could accelerate glutathione degradation;
(iv) up-regulation of NOX4, an isoforms of nicotinamide adenine di-
nucleotide phosphate (NADPH) oxidase which is overexpressed also in
neurons of an hypoxic mouse model, could contribute to an increased
production of ROS [88-90].

4.2. Mechanisms underlying oxidative injury in the cochlea and the
pathogenesis of presbycusis

Oxidative injury is a threshold phenomenon that occurs after anti-
oxidant mechanisms are overwhelmed. In the brain, failure to cope
generates oxidative injury that has been causally linked to loss of
neurons during the progression of neurodegenerative diseases, such as
Parkinson's disease, Alzheimer's disease and amyotrophic lateral
sclerosis [91-94]. Protection of neurons from oxidative damage relies
on Nrf2/ARE-mediated upregulation of the glial antioxidant response,
which augments the synthesis of GSH [95]. Glial cells contribute to
neuronal detoxification from ROS by releasing GSH [53] through
plasma membrane hemichannels formed by Cx43 [54]. Our results in-
dicate that cochlear nonsensory cells release GSH through hemi-
channels that contain Cx26 protomers.

Reduction of Cx26 expression in the mouse cochlea and alterations
in the Nrf2/ARE pathway correlate with accelerated increase of hearing
thresholds and lower DPOAE responses, as reported in Section 3.
Moreover, the primary mechanism of regulation of NOX4 expression by
Nrf2 in brain cells seems to be most likely indirect, i.e. determined by
the levels of ROS, and so their level of expression could be regulated by
a negative feedback loop [88]. This could explain why Nrf2 expression
levels do not change significantly in Gjb2−/− mice at P5.

Based on our results with 2-NBDG, we suggest the following pa-
thogenesis for the accelerated presbycusis of Gjb2+/− mice: (i) reduced
gap junction coupling limits the transfer of nutrients, and glucose in
particular, from distant blood vessels to the avascular sensory epithe-
lium of the cochlea; (ii) glucose deprivation leads to oxidative stress;
(iii) alterations in the Nrf2/ARE pathway and insufficient expression of
Cx26 hemichannels limit the amount of detoxifying GSH released by
cochlear non-sensory cells; (iv) prolonged exposure to oxidative stress
causes lipid peroxydation which limits the function of GLUT transpor-
ters [96], further reducing the uptake of glucose by cochlear hair cells
(vicious circle); (v) the elevated mitochondrial metabolism of OHCs
[67], makes them particularly vulnerable to depletion of intracellular
glucose levels.

From a molecular perspective, recent evidence suggests that glucose
availability may regulate the NRF2-mediated antioxidant response
through a dynamic nutrient-sensitive post-translational modification of
KEAP1 and perhaps other substrates [97]. In addition, it has long been
know that glucose-regulated protein 75 (GRP75) is induced under
conditions of low glucose and other nutritional and environmental
stresses [98]. This mitochondria-associated membrane (MAM) protein
regulates ER–mitochondrial Ca2+ transfer [99] and has been recently
shown to play a major role in sensitivity to oxidative stress in neuronal
cells [100]. Our study suggests that these molecular players might be

also involved in the pathogenesis of the accelerated presbycusis.

4.3. Relevance of this study for human hearing

Presbycusis (or ARHL) is considered a polygenic and multifactorial
disease with both genetic and environmental factors involved being
largely unknown [101]. However, our results with a monogenic mouse
model of hearing loss suggest that presbycusis might also arise from
insufficient expression of Cx26, accompanied by increased levels of
oxidative stress and deregulation of the Nrf2/ARE pathway in the co-
chlea. Of note, an ABR-based study reported hearing loss at frequencies
in excess of 4 kHz in heterozygous (human) carriers of the GJB2 35delG
variant [102]. Moreover, all carriers of one mutated GJB2 allele had
significantly lower DPOAEs across most frequencies, with a trend in the
older age group towards lower DPOAEs [103,104]. Therefore our
analysis offers a mechanistic explanation also for hearing loss in these
subjects, based on augmented oxidative damage to SGNs, sensory and
nonsensory (epithelial and supporting) cells.

Furthermore, results of our population based genetics studies in
humans identified significant associations for two members of the Nrf2
pathway, namely PRKCE and TGFB1, a transforming growth factor
whose protein regulates cell proliferation, differentiation and growth,
and is frequently upregulated in tumor cells. Expression data available
through the GTEx database lead to interesting findings for TGFB1 in-
dicating that subjects with a potential reduced ARHL risk (i.e. subjects
carrying the alternative allele) might present a TGFB1 decreased tissue
expression. These findings suggest that TGFB1 down-regulation in the
Gjb2−/− animal models could play, at least in part, a protective com-
pensative effect in these hearing impaired mice.

In summary, our results with a monogenic mouse model of hearing
loss suggest that presbycusis might also arise from insufficient expres-
sion of the gap junction protein connexin 26 (Cx26) and highlight in-
teresting candidates to be further validated in larger cohorts and with
potential powerful translational opportunities. Therefore this work
sheds new light on the etiopathogenesis of progressive hearing loss and
also paves the way to its prevention in heterozygous carriers of 35deG,
the prevalent GJB2 mutation in several populations.
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