350 research outputs found

    Evidence for Quantum Interference in SAMs of Arylethynylene Thiolates in Tunneling Junctions with Eutectic Ga-In (EGaIn) Top-Contacts

    Get PDF
    This paper compares the current density (J) versus applied bias (V) of self-assembled monolayers (SAMs) of three different ethynylthiophenol-functionalized anthracene derivatives of approximately the same thickness with linear-conjugation (AC), cross-conjugation (AQ), and broken-conjugation (AH) using liquid eutectic Ga-In (EGaIn) supporting a native skin (~1 nm thick) of Ga2O3 as a nondamaging, conformal top-contact. This skin imparts non-Newtonian rheological properties that distinguish EGaIn from other top-contacts; however, it may also have limited the maximum values of J observed for AC. The measured values of J for AH and AQ are not significantly different (J ≈ 10-1 A/cm2 at V = 0.4 V). For AC, however, J is 1 (using log averages) or 2 (using Gaussian fits) orders of magnitude higher than for AH and AQ. These values are in good qualitative agreement with gDFTB calculations on single AC, AQ, and AH molecules chemisorbed between Au contacts that predict currents, I, that are 2 orders of magnitude higher for AC than for AH at 0 < |V| < 0.4 V. The calculations predict a higher value of I for AQ than for AH; however, the magnitude is highly dependent on the position of the Fermi energy, which cannot be calculated precisely. In this sense, the theoretical predictions and experimental conclusions agree that linearly conjugated AC is significantly more conductive than either cross-conjugated AQ or broken conjugate AH and that AQ and AH cannot necessarily be easily differentiated from each other. These observations are ascribed to quantum interference effects. The agreement between the theoretical predictions on single molecules and the measurements on SAMs suggest that molecule-molecule interactions do not play a significant role in the transport properties of AC, AQ, and AH.

    Conductance statistics from a large array of sub-10 nm molecular junctions

    Full text link
    Devices made of few molecules constitute the miniaturization limit that both inorganic and organic-based electronics aspire to reach. However, integration of millions of molecular junctions with less than 100 molecules each has been a long technological challenge requiring well controlled nanometric electrodes. Here we report molecular junctions fabricated on a large array of sub-10 nm single crystal Au nanodots electrodes, a new approach that allows us to measure the conductance of up to a million of junctions in a single conducting Atomic Force Microscope (C-AFM) image. We observe two peaks of conductance for alkylthiol molecules. Tunneling decay constant (beta) for alkanethiols, is in the same range as previous studies. Energy position of molecular orbitals, obtained by transient voltage spectroscopy, varies from peak to peak, in correlation with conductance values.Comment: ACS Nano (in press

    Clinical use of HIV integrase inhibitors : a systematic review and meta-analysis

    Get PDF
    Background: Optimal regimen choice of antiretroviral therapy is essential to achieve long-term clinical success. Integrase inhibitors have swiftly been adopted as part of current antiretroviral regimens. The purpose of this study was to review the evidence for integrase inhibitor use in clinical settings. Methods: MEDLINE and Web-of-Science were screened from April 2006 until November 2012, as were hand-searched scientific meeting proceedings. Multiple reviewers independently screened 1323 citations in duplicate to identify randomized controlled trials, nonrandomized controlled trials and cohort studies on integrase inhibitor use in clinical practice. Independent, duplicate data extraction and quality assessment were conducted. Results: 48 unique studies were included on the use of integrase inhibitors in antiretroviral therapy-naive patients and treatment-experienced patients with either virological failure or switching to integrase inhibitors while virologically suppressed. On the selected studies with comparable outcome measures and indication (n = 16), a meta-analysis was performed based on modified intention-to-treat (mITT), on-treatment (OT) and as-treated (AT) virological outcome data. In therapy-naive patients, favorable odds ratios (OR) for integrase inhibitor-based regimens were observed, (mITT OR 0.71, 95% CI 0.59-0.86). However, integrase inhibitors combined with protease inhibitors only did not result in a significant better virological outcome. Evidence further supported integrase inhibitor use following virological failure (mITT OR 0.27; 95% CI 0.11-0.66), but switching to integrase inhibitors from a high genetic barrier drug during successful treatment was not supported (mITT OR 1.43; 95% CI 0.89-2.31). Integrase inhibitor-based regimens result in similar immunological responses compared to other regimens. A low genetic barrier to drug-resistance development was observed for raltegravir and elvitegravir, but not for dolutegravir. Conclusion: In first-line therapy, integrase inhibitors are superior to other regimens. Integrase inhibitor use after virological failure is supported as well by the meta-analysis. Careful use is however warranted when replacing a high genetic barrier drug in treatment-experienced patients switching successful treatment

    Adrenergic β2 receptor activation stimulates anti-inflammatory properties of dendritic cells in vitro

    Get PDF
    Vagal nerve efferent activation has been shown to ameliorate the course of many inflammatory disease states. This neuromodulatory effect has been suggested to rest on acetylcholine receptor (AChR) activation on tissue macrophages or dendritic cells (DCs). In more recent studies, vagal anti-inflammatory activity was shown involve adrenergic, splenic, pathways. Here we provide evidence that the adrenergic, rather than cholinergic, receptor activation on bone marrow derived DCs results in enhanced endocytosis uptake, enhanced IL-10 production but a decreased IL-6, IL-12p70 and IL-23 production. In antigen specific T cell stimulation assays, adrenergic β2 receptor activation on bone marrow DCs led to an enhanced potential to induce Foxp3 positive suppressive Treg cells. These effects were independent of IL10-R activation, TGFβ release, or retinoic acid (RA) secretion. Hence, adrenergic receptor β2 activation modulates DC function resulting in skewing towards anti-inflammatory T cell phenotypes

    Acute and Long-Term Effects of Hyperthermia in B16-F10 Melanoma Cells

    Get PDF
    OBJECTIVE: Hyperthermia uses exogenous heat induction as a cancer therapy. This work addresses the acute and long-term effects of hyperthermia in the highly metastatic melanoma cell line B16-F10. MATERIALS AND METHODS: Melanoma cells were submitted to one heat treatment, 45°C for 30 min, and thereafter were kept at 37°C for an additional period of 14 days. Cultures maintained at 37°C were used as control. Cultures were assessed for the heat shock reaction. RESULTS: Immediately after the heat shock, cells began a process of fast degradation, and, in the first 24 h, cultures showed decreased viability, alterations in cell morphology and F-actin cytoskeleton organization, significant reduction in the number of adherent cells, most of them in a process of late apoptosis, and an altered gene expression profile. A follow-up of two weeks after heat exposure showed that viability and number of adherent cells remained very low, with a high percentage of early apoptotic cells. Still, heat-treated cultures maintained a low but relatively constant population of cells in S and G(2)/M phases for a long period after heat exposure, evidencing the presence of metabolically active cells. CONCLUSION: The melanoma cell line B16-F10 is susceptible to one hyperthermia treatment at 45°C, with significant induced acute and long-term effects. However, a low but apparently stable percentage of metabolically active cells survived long after heat exposure

    A general scaling relation for the critical current density in Nb3Sn

    Get PDF
    We review the scaling relations for the critical current density (Jc) in Nb3Sn wires and include recent findings on the variation of the upper critical field (Hc2) with temperature (T) and A15 composition. We highlight deficiencies in the Summers/Ekin relations, which are not able to account for the correct Jc(T) dependence. Available Jc(H) results indicate that the magnetic field dependence for all wires can be described with Kramer's flux shear model, if non-linearities in Kramer plots are attributed to A15 inhomogeneities. The strain (eps) dependence is introduced through a temperature and strain dependent Hc2*(T,eps) and Ginzburg- Landau parameter kappa1(T,eps) and a strain dependent critical temperature Tc(eps). This is more consistent than the usual Ekin unification, which uses two separate and different dependencies on Hc2*(T) and Hc2*(eps). Using a correct temperature dependence and accounting for the A15 inhomogeneities leads to a remarkable simple relation for Jc(H,T,eps). Finally, a new relation for s(eps) is proposed, based on the first, second and third strain invariants.Comment: Accepted Topical Review for Superconductor, Science and Technolog

    Indigenous Populations of Three Closely Related Lysobacter spp. in Agricultural Soils Using Real-Time PCR

    Get PDF
    Previous research had shown that three closely related species of Lysobacter, i.e., Lysobacter antibioticus, Lysobacter capsici, and Lysobacter gummosus, were present in different Rhizoctonia-suppressive soils. However, the population dynamics of these three Lysobacter spp. in different habitats remains unknown. Therefore, a specific primer–probe combination was designed for the combined quantification of these three Lysobacter spp. using TaqMan. Strains of the three target species were efficiently detected with TaqMan, whereas related non-target strains of Lysobacter enzymogenes and Xanthomonas campestris were not or only weakly amplified. Indigenous Lysobacter populations were analyzed in soils of 10 organic farms in the Netherlands during three subsequent years with TaqMan. These soils differed in soil characteristics and crop rotation. Additionally, Lysobacter populations in rhizosphere and bulk soil of different crops on one of these farms were studied. In acid sandy soils low Lysobacter populations were present, whereas pH neutral clay soils contained high populations (respectively, <4.0–5.87 and 6.22–6.95 log gene copy numbers g−1 soil). Clay content, pH and C/N ratio, but not organic matter content in soil, correlated with higher Lysobacter populations. Unexpectedly, different crops did not significantly influence population size of the three Lysobacter spp. and their populations were barely higher in rhizosphere than in bulk soil

    Kinetic study of the selective hydrogenation of styrene over a Pd egg-shell composite catalyst

    Get PDF
    This is a study on the kinetics of the liquid-phase hydrogenation of styrene to ethylbenzene over a catalyst of palladium supported on an inorganic–organic composite. This support has a better mechanical resistance than other commercial supports, e.g. alumina, and yields catalysts with egg-shell structure and a very thin active Pd layer. Catalytic tests were carried out in a batch reactor by varying temperature, total pressure and styrene initial concentration between 353–393 K, 10–30 bar, and 0.26–0.60 mol L−1. Kinetic models were developed on the assumptions of dissociative hydrogen chemisorption and non-negligible adsorption of hydrogen and styrene. Final chemical reaction expressions useful for reactor design were obtained. The models that best fitted the experimental data were those ones that considered the surface reaction as the limiting step. In this sense, a two-step Horiuti–Polanyi working mechanism with half hydrogenation intermediates gave the best fit of the experimental data. The heats of adsorption of styrene and ethylbenzene were also estimated.The authors are gratefully indebted to CONICET, ANPCyT and Universidad Nacional del Litoral for financially sponsoring this research work

    The diagnostic value of CRP, IL-8, PCT, and sTREM-1 in the detection of bacterial infections in pediatric oncology patients with febrile neutropenia

    Get PDF
    In this study, we evaluated C-reactive protein (CRP), interleukin (IL)-8, procalcitonin (PCT), and soluble triggering receptor expressed on myeloid cells-1 (sTREM-1) as predictors for bacterial infection in febrile neutropenia, plus their usefulness in febrile neutropenia during chemotherapy-induced gastrointestinal mucositis. Plasma was obtained from pediatric oncology patients at presentation with febrile neutropenia (n = 43) and 24-48 h later (n = 17). The patients were classified as having or not having a bacterial infection. Plasma was also obtained of patients in the absence and in the presence of mucositis (n = 26). At presentation with febrile neutropenia, median IL-8 and PCT levels were significantly increased in patients with a bacterial infection, in contrast to CRP and sTREM-1. IL-8 was the most sensitive marker for the early detection of bacterial infection, in combination with clinical parameters or PCT the sensitivity reached 100%. After 24-48 h, only PCT was significantly elevated during bacterial infection. IL-8 levels were significantly increased during mucositis. Mucositis did not cause considerable changes in PCT levels. IL-8 is the most useful marker for the early detection of bacterial infections, compared with CRP, PCT, and sTREM-1. IL-8 in combination with clinical parameters or PCT might be even more useful. Gastrointestinal mucositis alone does not affect PCT levels, in contrast to IL-8 levels, and therefore, PCT might be more useful for the detection of bacterial infections during mucositis than IL-8
    corecore