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Abstract

Vagal nerve efferent activation has been shown to ameliorate the course of many inflammatory disease states. This neuro-
modulatory effect has been suggested to rest on acetylcholine receptor (AChR) activation on tissue macrophages or
dendritic cells (DCs). In more recent studies, vagal anti-inflammatory activity was shown involve adrenergic, splenic,
pathways. Here we provide evidence that the adrenergic, rather than cholinergic, receptor activation on bone marrow
derived DCs results in enhanced endocytosis uptake, enhanced IL-10 production but a decreased IL-6, IL-12p70 and IL-23
production. In antigen specific T cell stimulation assays, adrenergic b2 receptor activation on bone marrow DCs led to an
enhanced potential to induce Foxp3 positive suppressive Treg cells. These effects were independent of IL10-R activation,
TGFb release, or retinoic acid (RA) secretion. Hence, adrenergic receptor b2 activation modulates DC function resulting in
skewing towards anti-inflammatory T cell phenotypes.
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Introduction

It has become clear that interaction of the nervous system with

antigen presenting immune cells contributes to the homeostatic

state of the body [1,2]. During inflammation, reflex activation of

the autonomous nervous system via afferent fibers can lead to

activation of efferent signals that can modulate local inflammatory

responses via the release of sympathetic and parasympathetic

neurotransmitters and neuropeptides [3]. Vagal signaling has been

shown to ameliorate disease in a range of inflammatory disease

models such as experimental colitis [4] and post-operative ileus

[5], an effect that is suggested to depend on acetylcholine receptor

(AChR) activation on tissue macrophages [6]. The latter effect

may be mediated via direct release of acetylcholine (ACh) and

interaction with cholinergic receptors [2,5,7], or be mediated via

postganglionic adrenergic activity [8–10]. However, para- and

sympathetic systems work in tandem and stimulation of vagus

nerve output may well affect sympathetic activity and catechol-

amine release as shown earlier [1,9].

However, a variety of neurotransmitters in addition to ACh,

such as catecholamines (nor)epinephrine and several neuropep-

tides, can influence the function of myeloid immune cells such as

macrophages but also dendritic cells (DCs) [11,12], an effect that

may have been largely ignored in earlier models. DCs are

specialized antigen presenting cells (APCs) with the unique ability

to initiate and polarize adaptive immune responses. DCs act as

innate immune sensors and capture antigens via endocytosis.

Murine bone marrow derived dendritic cells (BMDC) express

nicotinic AChR, muscarinic AChR, adrenergic receptors (AR) and

several peptidergic receptors like the vasointestinal peptide

receptors VPAC1 and 2. Activation of these receptors and

subsequent modulation of DC function has been studied earlier

[11–13], but conclusions about the net effect have been

inconsistent.

To clarify the role of adrenergic and cholinergic receptor

signaling on the modulation of DC function, we compared the

effect of the (para)sympathetic agonists ACh, nicotine, and

epinephrine, on various DC functions such as endocytosis,

maturation, cytokine production and assess the ability of these

DC to induce/drive T helper (Th) cell differentiation. We establish

a potential of sympathetic neurotransmitter NE to stimulate IL-10

secretion whilst reducing IL12-p70 production. This effect

corresponded with a Th2 and regulatory T-cell (Treg) skewing

potential of BMDCs pre-exposed to AR-b2 agonists. For this

reason, AR-b2 agonists may be considered as anti-inflammatory

agents in inflammatory diseases in which inflammatory DC

activity plays a causative role.

Materials and Methods

Mice
C57BL/6 inbred mice were purchased from Charles River

(Maastricht, The Netherlands). All mice were female, 2–3 months

old and maintained in our animal facility under standard 12-h
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photoperiod, at 2161uC, with food and water ad libitum. Female

mice were chosen to avoid fighting behavior prior to cell

harvesting. Before bone marrow cell isolation, mice were

acclimated at housing facility for 7 days to eliminate shipping

stress. Female and male OT-II transgenic mice were bred in the

AMC animal facility. The animal experiments committee of the

University of Amsterdam approved all experiments described in

this study.

Bone marrow-derived DCs
Murine BMDCs from femur and tibia of C57BL/6 mice were

generated as previously described [14]. Cells were cultured in

10 cm petri dishes (Greiner Bio One, Germany) at a concentration

of 56106 cells/10 mL at 37uC, 5% CO2 in complete medium:

RPMI 1640 (Gibco, Paisley, UK) containing 10% heat inactivated

FCS, 2 mM l-glutamine 100 U/ml Penicillin, 100 mg/ml strepto-

mycin all from (Lonza, Belgium), 50 mM 2-mercaptoethanol

(Sigma-Aldrich, Zwijndrecht, The Netherlands), and 20 ng/ml

granulocyte/macrophage-colony-stimulating factor (GM-CSF, Pe-

protech). At day 3, 10 ml of fresh medium was added to each plate

supplemented with 10 ng/ml GM-CSF. At day 6 half of culture

medium was replaced with fresh medium supplemented with

10 ng/ml GM-CSF. At day 8 non-adherent cells were collected as

immature BMDCs. The purity of CD11c+ cells obtained was

routinely .90% as assessed by flow cytometry.

In vitro experiments
Day 8 immature BMDCs were cultured at a concentration of

16106 cells/ml in complete medium in 24 wells suspension plates.

Based on prior dose-finding using maturing dendritic cells, cells

were either incubated with 1 mM of acetylcholine, nicotine,

epinephrine, salbutamol (all from Sigma-Aldrich) or medium for

20 min. To block AR-b receptors, cells were pre-incubated for

20 min. with 1 mM propranolol (Sigma-Aldrich). Immature

BMDCs were stimulated with 100 ng/ml ultra pure LPS

(Invivogen, San Diego, CA) for 24 hours to obtain mature

BMDCs. Supernatant was collected for cytokine protein quanti-

fication by sandwich ELISA for IL-12p70, IL-10, IL-17A and IL-

23 (R&D systems, Abingdon, UK). For measurement of co-

stimulatory molecule expression, BMDCs were incubated for

30 min. 4uC with allophycocyanin conjugated anti-CD11c (clone

HL3) and fluorescein isothiocyanate (FITC) conjugated anti-

MHCII (clone AF6-120.1) (BD Biosciences), anti-CD80 FITC

(clone 16-10A1), anti-CD86 PE (clone GL1), anti-CD40 FITC

(clone HM40-3) (eBiosciences, San Diego, USA), washed twice

and positive cells for immunostaining were identified using the

flow cytometry analyzer Calibur (BD Biosciences). Further analysis

was performed with Flowjo (version 7.6.5.).

For IL-10 and TGF-b blocking experiments we used 1 mg/ml

anti-IL-10R (clone 1B1.2), 1 mg/mL anti-TGF-b (clone 1D11) and

as an isotype control anti-b-Galactosidase (clone GL113). To block

endogenous retinoic acid (RA) production we used 10 mM LE540

(Wako chemicals) and LE135 (Tocris Biosciences). For tyrosine

hydroxylase (TH) blockade a-methyl-DL-tyrosine methyl esther

hydrochloride (AMPT) (Sigma Aldrich) was used according to

manufacturer instructions.

Real-time RT-PCR
Mature BMDCs were collected and RNA was extracted using

TRIpure (Roche, Mannheim, Germany). Genomic DNA was

removed using DNase (Promega, Madison WI, USA) and cDNA

was synthesized from 1 mg of total RNA using cDNA synthesizing

kit (Thermo Scientific, Lithuania). The SYBR green-based real-

time PCR technique was used to detect the expression of AR-b1,

AR-b2, AR-b3, and TH. The cDNA was diluted 4-fold for the

real-time PCR assay. The PCR mixture consists of 1 ml cDNA,

5 ml SYBR-green master mix (Roche) and 1 mM of each primer in

a total volume of 10 ml. Real-time PCR was performed using the

Lightcycler 480 (Roche) detection system. Cycling conditions used

were 95uC for 15 s and 60uC for 1 min, for 40 cycles. Data were

analyzed using the DDCt method and results were expressed as

fold difference relative to the mean expression of the housekeeping

genes b-actin and b2-Macroglobuline (B2M). All primer sequences

used are given in Table 1.

Endocytosis assay
The endocytosis assay was performed as previously described

[15]. Immature BMDCs (16106/ml) were pre-incubated for

20 minutes with 1 mM of acetylcholine, nicotine, epinephrine or

salbutamol in complete medium. The endocytic tracer FITC-

Dextran (M.W. 4,000) was added to a final concentration of

1 mg/ml. One plate was incubated at 37uC (control) and the

second was incubated on ice and was used as a background control

for every time point. Endocytosis was halted at the indicated time

points by rapidly cooling the cells on ice followed by 3 washes with

ice cold 2% FBS-PBS. Cells were analyzed by flow cytometry. The

geometric mean fluorescent intensity difference between 37uC and

4uC was considered as the result of antigen uptake.

In vitro stimulation of naı̈ve OVA-specific CD4+ T cells
Day 8 immature BMDCs were incubated for 6 hours with

Ovalbumin (Grade VI, Sigma-Aldrich) at a concentration of

250 mg/ml. Cells were washed and pre-incubated with vehicle,

epinephrine or salbutamol, 1 mM for 20 min, before stimulation

with LPS for 24 hours. Spleen cells from OT-II mice were

prepared and CD4+CD62L+ naı̈ve T cells were isolated by

magnetic cell sorting (MACS) according to manufacturer’s

instructions (Miltenyi Biotech).

To examine the potential effect of AR-stimulated BMDCs to

alter T cell proliferation, matured BMDCs were washed twice to

remove compounds and LPS, and freshly isolated naı̈ve T cells

were stained with 5, 6-carboxy-succinimidyl-fluoresceine-ester

(CFSE, Molecular Probes, Eugene, Oregon) and co-cultured with

BMDCs for 4 days. Proliferation was measured by flow cytometry.

To investigate the effect of AR-stimulated BMDCs on T cell

differentiation, matured BMDCs were co-cultured with naı̈ve OT-

II T cells for 5 days in 96 wells plates at a BMDC:T cell ratio of

1:10. Supernatant was collected at day 4 of co-culture for cytokine

measurement by ELISA and fresh medium was added. At day 5, T

cells were harvested, washed and restimulated with 100 ng/ml

phorbol myristate acetate (PMA) and 1 mg/ml ionomycin (both

from Sigma-Aldrich). After two hours 10 mg/ml Brefeldin A

(Sigma-Aldrich) was added and cells were incubated for 6 hours.

Cells were stained for CD4 (eBiosciences) and fixed in 4%

Table 1. Primer sequences used in this study.

Gene 59 Primer sequence Forward 59 Primer sequence Reverse

Adrb1 CACACAGGGTCTCAATGCTG GATCTGGTCATGGGATTGCT

Adrb2 GAGTGTGCAGGACGCACCCC CTGTCGTTCCCGTGTGGCCC

TH AATGGGTTCCCAGGTTCC AGCAGGATACCAAGCAGGC

b-actin TGACAGGATGCAGAAGGAGATTAC AGCCACCGATCCACACAGA

B2M TGGTCTTTCTGGTGCTTGTCT ATTTTTTTCCCGTTCTTCAGC

doi:10.1371/journal.pone.0085086.t001
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paraformaldehyde (Merck, Darmstadt, Germany) permeabilized

using 0.5% Saponin (Sigma-Aldrich) for intracellular staining for

IL-4, IL-17A (eBioscience) and IFNc (BD Biosciences) or fixed and

permeabilized with Foxp3 staining kit (eBiosciences) for Foxp3

expression according to manufacturer’s instructions and charac-

terized by flow cytometry.

Aldefluor assay
Immature BMDCs were pre-incubated with epinephrine,

propranolol followed by epinephrine or vehicle control and

activated with LPS for 24 hrs. After maturation cells were

harvested and RALDH activity in individual cells was measured

using Aldefluor staining kit (StemCell Technologies, Grenoble, Fr),

according to the manufacture’s protocol with modifications.

Briefly, cells were suspended at 106 cells/ml in Aldefluor assay

buffer containing activated Aldefluor reagent (1.5 mM) with or

without the RALDH inhibitor diethylaminobenzaldehyde (DEAB,

15 mM) were incubated for 40 min at 37uC. The cells were

subsequently stained with APC conjugated anti-CD11c (BD

Biosciences) in ice-cold Aldefluor assay buffer. Aldefluor reactive

cells were detected using a FACSCalibur flow cytometer. Cell

viability was determined by flow cytometry with 7AAD exclusion.

Statistical analysis
Statistical analysis was performed using GraphPad Prism

Version 5.0 (GraphPad Software, San Diego, USA). For multi-

experimental group analysis, data were subjected to one-way or

two-way ANOVA (analysis of variance) followed by post hoc test

(Bonferroni and Newman-Keuls) for group differences. All data

are expressed as means 6 standard error of mean (SEM). The

two-tailed level of significance was set at p#0.05, 0.01, 0.001 for

group differences.

Results

b2-AR activation modulates cytokine profile of maturing
BMDCs

First, we determined to what extent neurotransmitters have the

potential to modulate the cytokine profile of maturing BMDCs.

To this end, immature BMDCs were treated prior to maturation

with LPS with indicated doses of epinephrine, the AR-b2 selective

agonist salbutamol, and the AR-b antagonist propranolol. For

cholinergic modulation of BMDCs we used ACh and nicotine.

Cholinergic receptor activation using ACh on BMDCs resulted

in a significant increase of IL-10, and decreased levels of IL-12p70

(fig. 1A). The effect of ACh was reproduced using muscarine, and

not nicotine, and was blocked by atropine (fig. 1A). The latter data

Figure 1. Effect of adrenergic and cholinergic activation on cytokine production in maturing BMDC after 24 h of LPS stimulation
measured by ELISA. Panel A, IL-10, IL-12p70 and IL-23 concentrations in ACh and Nicotine (Nic; 1 mM) pre-treated BMDC. Panel B, IL-10, IL-12p70
and IL-23 concentrations in epinephrine (epine), salbutamol (sal) and/or propranolol (prop) (all at 1 mM) pre-treated BMDC. The values are expressed
in pg/ml and represent the mean 6 SEM of three independent experiments representative of 5 experiments. * p,0.05, ** p,0.01, ***p,0.001
(ANOVA).
doi:10.1371/journal.pone.0085086.g001
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demonstrate that muscarinic rather than nicotinic receptors on

BMDCs mediate these changes in cytokine release, supporting

earlier reports in human DC cultures [12]. We next tested the

potential of cholinergic receptor agonists to AR agonists to

modulate BMDC cytokine profile. When LPS-induced maturation

of BMDCs was performed after pretreatment with epinephrine or

the b2-AR selective agonist salbutamol, IL-10 production was

significantly increased, whilst IL-12p70 levels were almost

completely blocked compared to vehicle. This effect was

counteracted by the general AR-b receptor antagonist propranolol

(fig. 1A), further confirming the involvement of AR-b2 in this

process. Epinephrine additionally decreased production of the pro-

inflammatory cytokine IL-23 to similar extent; however this effect

was not significantly blocked by propranolol, and no significant

decrease was seen using salbutamol. The effect of epinephrine and

norepinephrine on BMDCs were highly comparable and suggest

the same mode of action of these two catecholamines (data not

shown). As the highest effective dose was 1 mM for both

cholinergic as well as adrenergic agonists, we conclude that AR-

b2 activation was more potent in modulating BMDC cytokine

responses.

Adrenergic modulation of cytokine secretion involves
cAMP dependent pathways

We next addressed the mechanism by which AR-b2 regulates

BMDC cytokine release. Regulation through AR-b2 could either

occur indirectly via the induction of known regulatory molecules

such as IL-10 or TGFb, or be a direct consequence of receptor

Figure 2. The effect of epinephrine and salbutamol on IL-10 and IL-12p70 production by BMDC in the presence of indicated
reagents added. Experiments in the presence of; Panel (A) IL-10R blocking antibody, (B) TGF-b blocking antibody, or (C) blockers of RA signaling in
BMDC. Data are expressed in pg/ml and represent the mean 6 SEM of two independent experiments using BMDC from three different mice.
doi:10.1371/journal.pone.0085086.g002
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ligation. First we assessed whether the effects on cytokine

production by BMDCs induced by AR-b2 activation depended

on the enhanced secretion of IL-10, or activation of TGF-b, or

retinoic acid signaling by BMDCs. Thereto, we investigated

whether AR-b2 activation was still effective in the presence of

blocking antibodies against the receptor for IL-10 or TGF-b, or

blockers of retinoic acid (RA) signaling (LE135 and LE540)

(fig. 2A–C). Although the blocking antibody against IL-10R

increased cytokine responses induced by LPS maturation, the

potential of AR-b2 activation to modulate cytokine responses

towards IL-10 production in BMDCs was not affected (fig. 2A).

Moreover, blocking of TGF-b signaling or the inhibition of

retinoic acid receptor signaling did not influence the changes in

cytokine profile after epinephrine or salbutamol treatment (fig. 2B

and C). To further confirm that the AR-b2 activation in BMDCs

is not mediated by altered release of IL-10 or TGF-b receptor

signaling but rather involves direct action of the AR-b2 we

challenged immature BMDCs with Prostaglandin E2 (PGE2) to

mimic the effects of AR-b2 G-protein coupled receptor (GPCR)

activation (not shown) through direct induction of cyclic adenosine

monophosphate (cAMP) activity. This treatment elicited similar

changes in the cytokine profile of maturing BMDCs, demonstrat-

Figure 3. The relative mRNA expression levels of the AR-be radrb1) and AR-b anadrb2) in immature BMDC, and matured BMDC
matured in the presence of epinephrine or salbutamol (Panel A). AR-b3 receptors are not expressed in BMDC. Panel B, the expression of the
enzyme for catecholamine production, Tyrosine hydroxylase (TH) expression is not affected by epinephrine in matured BMDC. Panel C, blocking of
endogenous TH activity by AMPT does not affect the potential of epinephrine or salbutamol to modulate IL-10 and IL-12p70 production. The data
represent the mean 6 SEM of three independent experiments representative of 5 experiments. * p,0.05, ** p,0.01, ***p,0.001 (ANOVA).
doi:10.1371/journal.pone.0085086.g003
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Figure 4. The effects of ACh, epinephrine, salbutamol and nicotine on BMDC endocytosis of FITC-Dextran. Panel A shows a time course
of endocytosis in treated BMDCs. CD11c gated immature BMDC endocytosis was assessed using flow cytometry. Results are expressed as mean
fluorescence intensity and are the mean 6 SEM of three experiments. Statistical significance was calculated using one way ANOVA. * p,0.05,
***p,0.001 versus control (37uC). Panel B: overlay histograms of BMDC stained for MHCII and co-stimulatory molecules CD40, CD80 and CD86 after
24 hours of LPS stimulation were determined by flow cytometry. Cell populations in the grey area indicate the specific isotype control. Both MHCII
and co-stimulatory molecules are up-regulated by immature BMDC compared to LPS stimulated matured BMDC. Incubation with the various
neurotransmitters before or during maturation has no effect on the levels of maturation markers. Numbers on each histogram indicate the geometric
mean fluorescence intensity of cell population for each molecule from representative data of three experimental groups.
doi:10.1371/journal.pone.0085086.g004
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ing the direct involvement of AR-b2 in imprinting BMDCs, rather

than the autocrine action of secreted cytokines on the maturing

BMDCs culture.

Next, to explain the cytokine changes elicited by adrenergic

compounds, we analyzed the expression of adrenergic receptors on

maturing BMDCs. We confirmed that BMDCs express the

muscarinic receptors M(3), M(4) and M(5) (data not shown). In

addition, BMDCs expressed profound transcript levels of adrb1

and adrb2 throughout the maturation process (fig. 3A). Likewise,

no changes in AR-a subtypes were noted (not shown). Taken

together, these results indicate that BMDCs matured in the

presence of (nor)epinephrine or salbutamol change their cytokine

profile from a pro-inflammatory to an anti-inflammatory reper-

toire via AR-b2 activation.

BMDCs and macrophages were reported to express the rate-

limiting enzyme for catecholamine production, tyrosine hydrox-

ylase (TH) [16]. We analyzed whether TH expression was altered

by epinephrine- incubation (fig. 3B), but the transcript levels of TH

in maturing BMDCs after pre-exposure to epinephrine showed no

different expression pattern. Moreover, blocking the enzymatic

activity of TH using a-methyl-DL-tyrosine methyl esther hydro-

chloride (AMPT) did not affect the AR potential to induce an anti-

inflammatory cytokine response in treated BMDCs (fig. 3C).

Hence, the effect of AR-b2 activation on BMDC cytokine

secretion did not involve the autocrine activity of endogenously

produced catecholamines.

Adrenergic agonists enhance endocytosis in immature
BMDCs

As the cytokine response also depends on antigen uptake, we

next examined whether the potential of immature BMDCs to take

up antigen was affected by pre-incubation with neurotransmitter.

As endocytosis is a very important step for antigen presentation by

BMDCs, we first examined the effect of adrenergic agonists

epinephrine, and salbutamol, and cholinergic agonists ACh, and

nicotine, on the endocytotic uptake of inert dextran particles. To

this end, immature BMDCs were pre-treated with the respective

agonists and allowed to take up FITC-labeled dextran molecules.

BMDCs pre-incubated with epinephrine, but not cholinergic

agonists, exhibit a higher endocytic activity compared to control

BMDCs (fig. 4A). Furthermore, this effect was not mimicked by

incubation with salbutamol, suggesting that epinephrine stimulates

endocytosis in dendritic cells via a-AR, confirming earlier reports

[17]. Pre-treatment of immature BMDCs with ACh, nicotine, or

other cholinergic agonists did not lead to a changed uptake

compared to control.

We then determined whether the epinephrine treatment of

immature BMDCs altered the cellular maturation and the surface

expression of MHCII and the co-stimulatory molecules CD80,

CD86, CD40. To that end we pre-treated BMDCs with the

various neurotransmitters, matured the cells with LPS, and

assessed cell surface markers (fig. 4B). As expected, LPS

stimulation of BMDCs increased the expression of MHCII and

the co-stimulatory molecules CD80, CD86 and CD40 compared

to un-stimulated immature cells. Pre-treatment of immature

BMDCs with the various neurotransmitters prior to LPS

maturation did not modulate the expression levels of MHCII,

CD40, CD80 or CD86. These data indicate that neither b-

adrenergic nor cholinergic receptor activation alters the matura-

tion process of BMDCs upon LPS challenge.

Adrenergic agonists imprint BMDCs to stimulate Th2 and
regulatory Foxp3+ T cell differentiation

Given the potential of AR-activation to alter BMDCs cytokine

profiles and antigen uptake we next examined its functional

capacity to modulate antigen specific T cell skewing. To this end

we primed immature BMDCs with Ovalbumin (OVA) and

assessed whether AR-activation changed the polarization of

proliferating OVA-specific TCR transgenic (OT-II) T cells. In

the first set of experiments, we assessed the effect of AR activation

on the capacity of OVA-matured BMDCs to stimulate prolifer-

ation of antigen-specific T cells (Fig. 5). As is indicated, a brief

stimulation of either epinephrine or AR-b2 selective salbutamol

treatment of BMDCs did not change the number of proliferating

cells, nor did this treatment alter the rate of T cell division.

We examined whether AR-b2 activation would have conse-

quences for the potential of BMDCs to generate particular

phenotype differentiation of OVA-specific T cells. Epinephrine or

salbutamol pre-exposure to iBMDCs and subsequent maturation

with LPS did not significantly affect the potential of mature

BMDCs to induce Th1 cells as no enhanced percentage of cells

producing IFNc was detected (fig. 6A–B). Similarly, no difference

in intracellular IL-17A (fig. S1), or retinoic acid enzyme activity

(fig. S2) was detected. In contrast, epinephrine or salbutamol pre-

Figure 5. Incubation of vehicle (veh), epinephrine (epine), and salbutamol (sal) of immature Ovalbumin loaded BMDC in a T cell
proliferation assay. Cells were incubated during LPS maturation o/n. The cells were washed and freshly isolated naı̈ve CD4 OT-II cells were stained
with CFSE. Cells were co-cultured for 3 days and CFSE dilution was determined by flow cytometry. Overlays shown are representative of 3
independent experiments.
doi:10.1371/journal.pone.0085086.g005
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exposure to iBMDCs led to a significant induction of Th2 cells as

determined by enhanced percentage cells having intracellular

production of IL-4 (Fig. 6A and C).

Next to the effect on Th2 induction, a prominent effect of AR-

b2 stimulation of DCs was a significant up-regulation of the

induction of regulatory T cells that expressed Foxp3 (fig. 7 A–B).

We verified that the potential of epinephrine to induce Foxp3-

positive T cells was dose-dependent, with the highest activity at

1 mM epinephrine (not shown). Moreover, in the cell supernatant

containing this Foxp3 expressing T cell fraction, IL-10 production

was significantly increased compared to vehicle treated BMDC T

cell co-culture epinephrine (fig. 7 A–B). The potential to induce

regulatory T cells was enhanced with the addition of TGF-b to the

medium. Under these conditions, epinephrine exposure to the

maturing BMDCs synergizes with TGF-b leading to a significant

up-regulation of Foxp3 positive T cells compared to culture with

TGF-b alone (fig. 7C–D). However, the epinephrine mediated

increase in IL-10 secretion was no longer observed with the

exogenous addition of TGF-b (fig. 7D). The latter effect is

probably due to the previously reported potential of TGF-b
(fig. 7D) [18]. Since TGF-b (and retinoic acid-fig. S2) production

by BMDCs are not influenced by AR-b2 activation (fig. 7E) the

Figure 6. The effect of adrenergic agonists on BMDC potential to skew Tcells. Panel A. FACS plots of intracellular IFNcFand IL-4 in -OT-II T
cells co-cultured with BMDC pre-treated with vehicle (Veh), epinephrine (Epine) or salbutamol (Sal) (all at 1 mM). Intracellular IFNc FNr salarerer
affected, while IL-4 production is increased after AR-baffected, while IL-4 productB, histograms of % IFNc positive T cells by FACS and by ELISA of day
4 of co-culture supernatant. Panel C, histograms of % IL-4 positive T cells by FACS and by ELISA. Data are expressed as % positive of CD4 gated T cells
or as pg/ml and represent the mean 6 SEM of three independent experiments representative of 4 experiments. ***p,0.001 (ANOVA).
doi:10.1371/journal.pone.0085086.g006
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dose dependent increase in differentiation of Foxp3 positive T cells

after AR-b2 stimulation could be dependent on IL-6, which

significantly decreases after AR-b2 activation (fig. 7E right panel).

Discussion

In the current study we establish that myeloid DCs respond to

adrenergic stimulation by up-regulating their potential to induce

T-regs. Our data reveal an important functional effect of the

sympathetic system to ‘‘imprint’’ DCs leading to altered cytokine

secretion and antigen presenting function. The principle is now

generally established that the immune system can no longer be

regarded as an autonomous functioning entity but clearly receives

regulatory input from neuronal systems. Many neurotransmitters

and receptors are shared between the immune system and the

nervous system, substantiating claims of a strong regulatory

component of the nervous system in immune responses. A good

example thereof is the discovery of acetylcholine producing

memory T cells in the circulation [19,20] and spleen [8]. It is

likely that such cells can interact with other APCs or feed back on

nerve terminals in primary or secondary lymphoid organs.

DCs have been described to express cholinergic as well as AR of

several subclasses. Our study shows that DCs express b-ARs, as

well as a1 and a2 ARs, as described by others, reviewed by [21].

The ARs are G protein-coupled receptors that are composed of a1

(A,B,C) a2 (A, C, D) and b (b1, b2, and b3) that are coupled with

Gq, Gi and Gs proteins respectively. However, as with many other

neurotransmitters or their receptors the functional role of AR on

APCs is not entirely clear, as functional responses to epinephrine

may be dose, time and AR dependent.

Our data imply two important findings: firstly, although DCs

respond to general nicotinic cholinergic receptor agonists, there is

a strong additional potential of AR to modulate DC APC function,

and secondly AR activation on BMDCs stimulates skewing of Th2

and Treg populations. In human monocyte-derived dendritic cells

[22] and mouse BMDCs, epinephrine treatment has been

described earlier to suppress DC production of proinflammatory

cytokines, including IL-12 and TNF-a, whereas it enhances the

production of IL-10, similarly to cAMP-elevating agents such as

forskolin [17,21,23,24]. However, the functionality of the latter

observation is less well documented. We show here a potent

immune modulating effect on DCs via expression of their AR-b2,

rather than cholinergic receptors, and reveal that the epinephrine

activated pathway is a strong stimulant of Treg differentiation.

These Tregs generated via (nor)epinephrine conditioned DC may

have functional suppressive properties via production of IL-10 in

vitro, although we cannot ascertain that the Treg fraction is the

only cellular source of IL-10 in our system. Epinephrine enhances

DC endocytosis within a few minutes via a2-AR, confirming

earlier reports [17]. Twenty minutes exposure of DCs with

epinephrine (followed by washout) was required before LPS

maturation to achieve imprinting of DC antigen presenting

function towards an anti-inflammatory phenotype with Treg

promoting skewing activity. No effect was seen on the inductive

capacity to skew Th17 responses as shown earlier [25], and [26],

but this may be due to the use of C57/Bl6 mice cells that favor a

Th1 phenotype.

Stimulation of IL-10 production after AR-stimulation of IL-10

production after AR- mice cells that favor a Th1 autocrine effect

hindering the production of IL-12p70, TNF-a and IL-6, but we

have shown here that blocking IL-10R or neutralizing TGF-b,

does not affect the potential of AR-b2 activation to enhance IL-10

secretion, nor the reduction IL-12p70 production. In fact, these

effects were mimicked by direct cAMP stimulation using PGE2,

confirming earlier data [22]. From this we can conclude that the

anti-inflammatory effect of b2-AR activation on maturing DCs is

the result of the direct AR-b2 activation and not of the changed

cytokine milieu. The effect of epinephrine on cytokine production

seems to be mainly mediated via b-ARs coupled with Gs proteins

responsible for the elevation of intracellular cAMP levels and the

activation of protein kinase A.

Further investigation is needed to unravel the exact underlying

mechanism by which epinephrine enhances Treg polarization.

Production and release of IL-12p70 by DCs will skew naı̈ve T cells

into Th1 IFNc producing cells, while IL-4 will result in the

differentiation of Th2 cells. In mice, interaction between DC and

naı̈ve T cells in the presence of TGF-b and IL-6 is required for

Th17 induction and IL-23 is important for Th17 expansion

[27,28]. Finally TGF-b in conjunction with the release of RA

induces Foxp3 Tregs which are able to actively suppress

inflammation via their release of IL-10 [29,30]. In our study we

observed a dose-dependent activity of epinephrine to induce the

potential of DCs to give rise to regulatory T cells, an effect that is

likely due to the cytokine profile. The reduced levels of IL-6, in

conjunction with the modest potential to affect IL-4 release (that

reduces IL-10 and TGF-b release by Treg [31]), is a likely

explanation for the observed tolarizing effect of epinephrine.

Notably, IL-6 serves a critical role in altering the balance between

Treg and Th17 cells, stimulating Th17 cell generation along with

TGF-b. As we found no change in Th17 nor TGF-b As we found

no change in Th17 nor TGF-b generation along with TGF-b
altering the balance between Treg and Th17 cells, stimulating

tolerogenic potential of treated DCs.

It seems likely that the adrenergic alteration of cytokine balance

is involved, at least in part, in immune suppression upon chronic

stress. Stress plays an important role in pathogenesis and

progression of various diseases [32]. Several stressors induce

immune alterations thereby influencing susceptibility or severity of

immune disorders such as infection and allergy. Stress activates the

sympathetic nervous system and induces (nor)epinephrine secre-

tion. Stress also activates the sympathetic–adrenal–medullary axis

and the hypothalamic–pituitary–adrenal axis thereby inducing

secretion of epinephrine from the adrenal medulla. As such,

catecholamines act as hormones and have a direct impact on the

immune responses systemically. In addition, sympathetic nerve

fibers also extend to lymphoid organs such as thymus, spleen,

lymph nodes, gut-associated lymphoid tissue, and bone marrow

[33,34]. Hence our data imply that (nor)epinephrine released from

the ends of sympathetic nerve fibers may represent a strong

immunomodulation system via ARs expressed on tissue DCs in

Figure 7. Adrenergic agonists exposure stimulates skewing of a Treg population. Panel A shows flow cytometry analyses of intracellular
staining of Foxp3 positive T cells skewed by BMDC treated with indicated AR agonist. Panel B, histograms of Foxp3 positive T cells (left) and IL-10
(right) concentrations in supernatant representative of three independent experiments. Panel C, FACS analyses and, panel D histograms of T cells
skewed as described in fig. 7A with added TGF-b, to stimulate Foxp3 differentiation. Panel E shows the concentrations of TGF-b analyses of
intracellular staining of Foxp3 posVeh), epinephrine (Epine) and salbutamol (Sal). Data are expressed in % positive of CD4 gated T cells (left) or as pg/
ml (right) and represent the mean 6 SEM of three independent experiments representative of 4 experiments. *p,0.05 **p,0.01 (ANOVA).
doi:10.1371/journal.pone.0085086.g007
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lymphoid organs, a system that adds to the already known

parasympathetic immunemodulatory properties.

Together, our data show that the DCs functional characteristic

as APCs is potently skewed by pre-exposure to AR-b2 agonists.

This observation awaits further analyses of different subsets of

tissue DCs at different stages of activation may be sensitive to

(nor)epinephrine release during stressful episodes. This implies that

DCs expressing ARs may be targeted in various stages of

inflammatory immune-mediated diseases.

Supporting Information

Figure S1 The effect of adrenergic agonists on BMDC
Th17 cell skewing. Panel A, FACS plots of intracellular IL-

17A. BMDC pre-treatment with epinephrine or salbutamol does

not affect Th17 differentiation. Panel B, histograms of IL-17A

positive T cells by FACS (left) and (right) IL-17A concentrations in

culture supernatant are not affected. Data are expressed in %

positive of CD4 gated T cells (left) or as pg/ml (right) and

represent the mean 6 SEM of three independent experiments.

(TIFF)

Figure S2 Aldefluor assay for detection of RALDH
activity in T cells. Panel A, left FACS plots are the control

with aldeflour inhibitor DEAB, right FACS plots (test) show active

Aldefluor activity of BMDC. There is no effect of epinephrine on

RALDH enzyme activity. Panel B, left, histogram of mean

fluorescence intensity of FACS plots. Right histogram shows

percentage (%) of BMDC positive for RALDH activity. Data show

means 6 SEM of 3 independent experiments.

(TIFF)
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