96 research outputs found
The triennial International Pigment Cell Conference (IPCC)
The International Federation of Pigment Cell Societies (IFPCS) held its XXIII
triennial International Pigment Cell Conference (IPCC) in Denver, Colorado in
August 2017. The goal of the summit was to provide a venue promoting a vibrant
interchange among leading basic and clinical researchers working on
leading-edge aspects of melanocyte biology and disease. The philosophy of the
meeting, entitled Breakthroughs in Pigment Cell and Melanoma Research, was to
deliver a comprehensive program in an inclusive environment fostering
scientific exchange and building new academic bridges. This document provides
an outlook on the history, accomplishments, and sustainability of the pigment
cell and melanoma research community. Shared progress in the understanding of
cellular homeostasis of pigment cells but also clinical successes and hurdles
in the treatment of melanoma and dermatological disorders continue to drive
future research activities. A sustainable direction of the societies creates an
international forum identifying key areas of imminent needs in laboratory
research and clinical care and ensures the future of this vibrant, diverse and
unique research community at the same time. Important advances showcase wealth
and breadth of the field in melanocyte and melanoma research and include
emerging frontiers in melanoma immunotherapy, medical and surgical oncology,
dermatology, vitiligo, albinism, genomics and systems biology, precision
bench-to-bedside approaches, epidemiology, pigment biophysics and chemistry,
and evolution. This report recapitulates highlights of the federate meeting
agenda designed to advance clinical and basic research frontiers from melanoma
and dermatological sciences followed by a historical perspective of the
associated societies and conferences
Optical tomography of Fock state superpositions
We consider optical tomography of photon Fock state superpositions in
connection with recent experimental achievements. The emphasis is put on the
fact that it suffices to represent the measured tomogram as a main result of
the experiment. We suggest a test for checking the correctness of experimental
data. Explicit expressions for optical tomograms of Fock state superpositions
are given in terms of Hermite polynomials. Particular cases of vacuum and low
photon-number state superposition are considered as well as influence of
thermal noise on state purity is studied.Comment: 5 pages, 2 figure
Polymorphisms in the Tumor Necrosis Factor Receptor Genes Affect the Expression Levels of Membrane-Bound Type I and Type II Receptors
The level of TNF receptors on various cells of immune system and its association with the gene polymorphism were investigated. Determining the levels of membrane-bound TNF receptors on peripheral blood mononuclear cells (PBMCs) was performed by flow cytometry using BD QuantiBRITE calibration particles. Soluble TNF receptor (sTNFRs) levels were determined by ELISA and genotyping was determined by PCR-RFLP. Homozygous TT individuals at SNP â609G/T TNFRI (rs4149570) showed lower levels of sTNFRI compared to GG genotype carriers. Homozygous carriers of CC genotype at SNP â1207G/C TNFRI (rs4149569) had lower expression densities of membrane-bound TNFRI on intact CD14 + monocytes compared to individuals with the GC genotype. The frequency differences in the CD3 + and CD19 + cells expressing TNFRII in relation to SNP â1709A/T TNFRII (rs652625) in healthy individuals were also determined. The genotype CC in SNP â3609C/T TNFRII (rs590368) was associated with a lower percentage of CD14 + cells expressing TNFRII compared to individuals with the CT genotype. Patients with rheumatoid arthritis had no significant changes in the frequencies of genotypes. Reduced frequency was identified for the combination TNFRI â609GT + TNFRII â3609CC only. The polymorphisms in genes represent one of cell type-specific mechanisms affecting the expression levels of membrane-bound TNF receptors and TNF -mediated signaling
Frontiers in Pigment Cell and Melanoma Research
We identify emerging frontiers in clinical and basic research of melanocyte
biology and its associated biomedical disciplines. We describe challenges and
opportunities in clinical and basic research of normal and diseased melanocytes
that impact current approaches to research in melanoma and the dermatological
sciences. We focus on four themes: (1) clinical melanoma research, (2) basic
melanoma research, (3) clinical dermatology, and (4) basic pigment cell
research, with the goal of outlining current highlights, challenges, and
frontiers associated with pigmentation and melanocyte biology. Significantly,
this document encapsulates important advances in melanocyte and melanoma
research including emerging frontiers in melanoma immunotherapy, medical and
surgical oncology, dermatology, vitiligo, albinism, genomics and systems
biology, epidemiology, pigment biophysics and chemistry, and evolution
Pharmacogenomic and clinical data link non-pharmacokinetic metabolic dysregulation to drug side effect pathogenesis
Drug side effects cause a significant clinical and economic burden. However, mechanisms of drug action underlying side effect pathogenesis remain largely unknown. Here, we integrate pharmacogenomic and clinical data with a human metabolic network and find that non-pharmacokinetic metabolic pathways dysregulated by drugs are linked to the development of side effects. We show such dysregulated metabolic pathways contain genes with sequence variants affecting side effect incidence, play established roles in pathophysiology, have significantly altered activity in corresponding diseases, are susceptible to metabolic inhibitors and are effective targets for therapeutic nutrient supplementation. Our results indicate that metabolic dysregulation represents a common mechanism underlying side effect pathogenesis that is distinct from the role of metabolism in drug clearance. We suggest that elucidating the relationships between the cellular response to drugs, genetic variation of patients and cell metabolism may help managing side effects by personalizing drug prescriptions and nutritional intervention strategies
Precision medicine driven by cancer systems biology
Molecular insights from genome and systems biology are influencing how cancer is diagnosed and treated. We critically evaluate big data challenges in precision medicine. The melanoma research community has identified distinct subtypes involving chronic sun-induced damage and the mitogen-activated protein kinase driver pathway. In addition, despite low mutation burden, non-genomic mitogen-activated protein kinase melanoma drivers are found in membrane receptors, metabolism, or epigenetic signaling with the ability to bypass central mitogen-activated protein kinase molecules and activating a similar program of mitogenic effectors. Mutation hotspots, structural modeling, UV signature, and genomic as well as non-genomic mechanisms of disease initiation and progression are taken into consideration to identify resistance mutations and novel drug targets. A comprehensive precision medicine profile of a malignant melanoma patient illustrates future rational drug targeting strategies. Network analysis emphasizes an important role of epigenetic and metabolic master regulators in oncogenesis. Co-occurrence of driver mutations in signaling, metabolic, and epigenetic factors highlights how cumulative alterations of our genomes and epigenomes progressively lead to uncontrolled cell proliferation. Precision insights have the ability to identify independent molecular pathways suitable for drug targeting. Synergistic treatment combinations of orthogonal modalities including immunotherapy, mitogen-activated protein kinase inhibitors, epigenetic inhibitors, and metabolic inhibitors have the potential to overcome immune evasion, side effects, and drug resistance
Dos and donâts in response priming research
Response priming is a well-understood but sparsely employed paradigm in cognitive
science. The method is powerful and well-suited for exploring early visuomotor
processing in a wide range of tasks and research fields. Moreover, response
priming can be dissociated from visual awareness, possibly because it is based
on the first sweep of feedforward processing of primes and targets. This makes
it a theoretically interesting device for separating conscious and unconscious
vision. We discuss the major opportunities of the paradigm and give specific
recommendations (e.g., tracing the time-course of priming in parametric
experiments). Also, we point out typical confounds, design flaws, and data
processing artifacts
Large expert-curated database for benchmarking document similarity detection in biomedical literature search
Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term FrequencyâInverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research
The Seventeenth Data Release of the Sloan Digital Sky Surveys: Complete Release of MaNGA, MaStar and APOGEE-2 Data
This paper documents the seventeenth data release (DR17) from the Sloan Digital Sky Surveys; the fifth and final release from the fourth phase (SDSS-IV). DR17 contains the complete release of the Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey, which reached its goal of surveying over 10,000 nearby galaxies. The complete release of the MaNGA Stellar Library (MaStar) accompanies this data, providing observations of almost 30,000 stars through the MaNGA instrument during bright time. DR17 also contains the complete release of the Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) survey which publicly releases infra-red spectra of over 650,000 stars. The main sample from the Extended Baryon Oscillation Spectroscopic Survey (eBOSS), as well as the sub-survey Time Domain Spectroscopic Survey (TDSS) data were fully released in DR16. New single-fiber optical spectroscopy released in DR17 is from the SPectroscipic IDentification of ERosita Survey (SPIDERS) sub-survey and the eBOSS-RM program. Along with the primary data sets, DR17 includes 25 new or updated Value Added Catalogs (VACs). This paper concludes the release of SDSS-IV survey data. SDSS continues into its fifth phase with observations already underway for the Milky Way Mapper (MWM), Local Volume Mapper (LVM) and Black Hole Mapper (BHM) surveys
- âŠ