75 research outputs found

    Tertiary sequence of deformation in a thin-skinned/thick-skinned collision belt: The Zagros Folded Belt (Fars, Iran)

    Get PDF
    International audienceWe describe how thin-skinned/thick-skinned deformation in the Zagros Folded Belt interacted in time and space. Homogeneous fold wavelengths (15.8 ± 5.3 km), tectono-sedimentary evidence for simultaneous fold growth in the past 5.5 ± 2.5 Ma, drainage network organization, and homogeneous peak differential stresses (40 ± 15 MPa) together point to buckling as the dominant process responsible for cover folding. Basin analysis reveals that basement inversion occurred ∼20 Ma ago as the Arabia/Eurasian plate convergence reduced and accumulation of Neogene siliciclastics in foreland basin started. By 10 Ma, ongoing contraction occurred by underplating of Arabian crustal units beneath the Iranian plate. This process represents 75% of the total shortening. It is not before 5 Ma that the Zagros foreland was incorporated into the southward propagating basement thrust wedge. Folds rejuvenated by 3–2 Ma because of uplift driven by basement shortening and erosion. Since then, folds grew at 0.3—0.6 mm/yr and forced the rivers to flow axially. A total shortening of 65–78 km (16–19%) is estimated across the Zagros. This corresponds to shortening rates of 6.5–8 km/Ma consistent with current geodetic surveys. We point out that although thin-skinned deformation in the sedimentary cover may be important, basement-involved shortening should not be neglected as it requires far less shortening. Moreover, for such foreland folded belts involving basement shortening, underplating may be an efficient process accommodating a significant part of the plate convergence

    Le séisme du 21 septembre 1999: influence de l’héritage structural et implication du socle au front de la chaine de Taiwan

    No full text
    [[sponsorship]]地球科學研究所[[note]]已出版(accepted);[SCI];有審查制度;具代表性[[note]]http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Drexel&SrcApp=hagerty_opac&KeyRecord=1631-0713&DestApp=JCR&RQ=IF_CAT_BOXPLO

    Building the Zagros collisional orogen: Timing, strain distribution and the dynamics of Arabia/Eurasia plate convergence

    No full text
    The Zagros Mountains are the result of the Arabia/Eurasia collision initiated at ~. 35. Ma as the rifted Arabian lithosphere was underthrusted beneath the Iranian plate due to its negative buoyancy. The onset of crustal thickening started at ~. 25. Ma, as recorded by the hinterland exhumation and foreland clastic deposition. Deformation throughout the Arabia/Eurasia collision zone and the uplift of the Iranian plateau occurred after 15-12. Ma, as a result of shortening/thickening of the thin Iranian crust. We emphasize that only 42% of the post-35. Ma convergence is partitioned by shortening within central Iran. Tomographic constraints show ongoing slab steepening or breakoff in the NW Zagros, whereas underthrusting of the Arabian plate is observed beneath central Zagros. The current subduction dynamics can be explained by the original lateral difference in the buoyancy of the distal margin that promoted slab sinking in NW Zagros and underthrusting in central Zagros. Critical wedge approach applied to the Zagros favors the hypothesis of strong brittle crust detached above a viscous lower crust. In contrast, the weak sedimentary cover deforms by buckling of a thick multilayered cover. Thrust faulting associated with folding occurs in the competent layers and is responsible for most of the earthquakes. There is evidence that the role of the slab pull force in driving the Arabian plate motion was reduced after ~. 12. Ma. Large-scale mantle flow induced by mantle upwelling at the Afar plume appears to be the main driver of the Arabia plate motion. We stress that the main kinematic change in the Zagros region occurred at 15-12. Ma as the Zagros uplifted, before the Arabian slab detached. The Zagros appears key to investigate coupling between continental rheology, plate driving forces and mountain building, in which the role of rift inheritance appears to be central. © 2012 Elsevier B.V.Peer Reviewe

    Drainage reorganization and divide migration induced by the excavation of the Ebro basin (NE Spain)

    No full text
    Intracontinental endorheic basins are key elements of source-to-sink systems as they preserve sediments eroded from the surrounding catchments. Drainage reorganization in such a basin in response to changing boundary conditions has strong implications on the sediment routing system and on landscape evolution. The Ebro and Duero basins represent two foreland basins, which developed in response to the growth of surrounding compressional orogens, the Pyrenees and the Cantabrian mountains to the north, the Iberian Ranges to the south, and the Catalan Coastal Range to the east. They were once connected as endorheic basins in the early Oligocene. By the end of the Miocene, new post-orogenic conditions led to the current setting in which the Ebro and Duero basins are flowing in opposite directions, towards the Mediterranean Sea and the Atlantic Ocean. Although these two hydrographic basins recorded a similar history, they are characterized by very different morphologic features. The Ebro basin is highly excavated, whereas relicts of the endorheic stage are very well preserved in the Duero basin. The contrasting morphological preservation of the endorheic stage represents an ideal natural laboratory to study the drivers (internal and/or external) of post-orogenic drainage divide mobility, drainage network, and landscape evolution. To that aim, we use field and map observations and we apply the χ analysis of river profiles along the divide between the Ebro and Duero drainage basins. We show here that the contrasting excavation of the Ebro and Duero basins drives a reorganization of their drainage network through a series of captures, which resulted in the southwestward migration of their main drainage divide. Fluvial captures have a strong impact on drainage areas, fluxes, and their respective incision capacity. We conclude that drainage reorganization driven by the capture of the Duero basin rivers by the Ebro drainage system explains the first-order preservation of endorheic stage remnants in the Duero basin, due to drainage area loss, independently from tectonics and climate

    Structure of orogenic belts controlled by lithosphere age

    No full text
    The structure of a mountain belt reflects the manner in which plate convergence is accommodated in Earth's lithosphere. However, the extent to which orogenic structure is preconditioned by the thermo-mechanical conditions of the converging plates is debated. Here we re-process and analyse existing data on the amount and style of contractional deformation in 30 orogens worldwide and compare this with the lithospheric strength and age of the colliding plates. We find a correlation between orogenic deformation, and specifically the depth at which the crust decouples from the underlying plate, and the age of the lithospheric plate at the time of collision. Orogens formed from Phanerozoic lithosphere, which has high geothermal gradients and weak mantle, are characterized by several under-thrust faults that form in the mid-to-lower crust and moderate amounts of deformation, at less than 35% crustal strain. In contrast, orogens formed on older lithospheric plates, which have greater strength and higher-viscosity mantle, are characterized by a large detachment fault and large amounts of deformation, at about 70% crustal strain. We conclude that inherited lithospheric strength influences the style and amount of plate-tectonic contraction during mountain building, and thus the stability of continental subduction. Our results emphasize the influence of the deep Earth on the structural style of collisional orogens. © 2013 Macmillan Publishers Limited. All rights reserved

    Late Cenozoic and modern stress fi elds in the western Fars (Iran): Implications for the tectonic and kinematic evolution of central Zagros

    No full text
    times in response to Arabia-Eurasia convergence. The western Fars highlights a major bend of the deformation front and displays a remarkable set of nearly N-S right-lateral strike-slip faults (the Kazerun-Borazjan/Karebass/Sabz-Pushan/Sarvestan faults) oblique at high angle to the belt. The region likely plays a major kinematic role by accommodating the change in shortening modes from partitioned in the western central Zagros to nonpartitioned in the eastern Zagros. The inversion of focal mechanisms from small and moderate earthquakes shows a consistent N020– 030 compression with a low ratio between differential stresses. This regime accounts for the combination of strike-slip and thrust-type mechanisms through likely s2/s3 permutations. Fault slip analysis reveals two successive late Cenozoic regional compressional trends, NE-SW then N020. The latter is in good agreement with the present-day stress. The significance of the NE-SW compression is discussed alternatively in terms of stress deviations or block rotations in relation to the strike-slip fault system. Fieldwork and satellite imagery suggest that these faults behave first as transfer faults during folding of the cover and later as strike-slip faults, in agreement with the succession of stress regimes and the evolution of the dominant deformation style from thin-skinned to thick-skinned. The first-order stability of the collision-related state of stress since 5 Ma supports that the Arabia-Eurasia convergence did not give rise to partitioning in the western Fars but rather was (and is still) accommodated by distributed deformation involving both shortening and strike-slip motion throughout the cover and th

    Autogenic versus allogenic controls on the evolution of a coupled fluvial megafan–mountainous catchment system: numerical modelling and comparison with the Lannemezan megafan system (northern Pyrenees, France)

    No full text
    Alluvial megafans are sensitive recorders of landscape evolution, controlled by both autogenic processes and allogenic forcing, and they are influenced by the coupled dynamics of the fan with its mountainous catchment. The Lannemezan megafan in the northern Pyrenean foreland was abandoned by its mountainous feeder stream during the Quaternary and subsequently incised, leaving a flight of alluvial terraces along the stream network. We use numerical models to explore the relative roles of autogenic processes and external forcing in the building, abandonment and incision of a foreland megafan, and we compare the results with the inferred evolution of the Lannemezan megafan. Autogenic processes are sufficient to explain the building of a megafan and the long-term entrenchment of its feeding river on time and space scales that match the Lannemezan setting. Climate, through temporal variations in precipitation rate, may have played a role in the episodic pattern of incision on a shorter timescale. In contrast, base-level changes, tectonic activity in the mountain range or tilting of the foreland through flexural isostatic rebound do not appear to have played a role in the abandonment of the megafan
    corecore