845 research outputs found

    Spontaneous synchronization of two bistable pyridine-furan nanosprings connected by an oligomeric bridge

    Full text link
    The intensive development of nanodevices acting as two-state systems has motivated the search for nanoscale molecular structures whose long-term conformational dynamics are similar to the dynamics of bistable mechanical systems such as Euler arches and Duffing oscillators. Collective synchrony in bistable dynamics of molecular-sized systems has attracted immense attention as a potential pathway to amplify the output signals of molecular nanodevices. Recently, pyridin-furan oligomers of helical shape that are a few nanometers in size and exhibit bistable dynamics similar to a Duffing oscillator have been identified through molecular dynamics simulations. In this article, we present the case of dynamical synchronization of these bistable systems. We show that two pyridine-furan springs connected by a rigid oligomeric bridge spontaneously synchronize vibrations and stochastic resonance enhances the synchronization effect

    A review of carbon fiber materials in automotive industry

    Full text link
    In present scenario, light weighting becomes a main issue for energy efficiency in automotive industry. The emission of gases and fuel efficiency of vehicles are two important issues. The best way to improve the fuel efficiency is to decrease the weight of vehicle parts. Research and development played an important role in lightweight materials for decreasing cost, increasing ability to be recycled, enabling their integration into vehicles, and maximizing their fuel economy efficacy. There arises a need for developing a novel generation of materials that will combine both weight reduction and safety issues. The application of carbon fibre reinforced plastic material offers the best lightweight potential to realize lightweight concepts. Carbon fibre reinforced plastic has outstanding specific stiffness, specific strength, and fatigue properties compared to commonly used metals. In automotive industry, the advantages of carbon fibre reinforced plastic are reduction in weight, part integration and reduction, crashworthiness, durability, toughness, and aesthetic appealing. Carbon fibre reinforced plastic is a composite material that has been used extensively in various applications such as aerospace industry, sports equipment, oil and gas industry, and automotive industry. Keeping in view the aforementioned advantages of carbon fibre reinforced plastic, the authors have presented a brief review on carbon fibre for automotive industrial applications. Š Published under licence by IOP Publishing Ltd

    Spontaneous Vibrations and Stochastic Resonance of Short Oligomeric Springs

    Full text link
    There is growing interest in molecular structures that exhibit dynamics similar to bistable mechanical systems. These structures have the potential to be used as nanodevices with two distinct states. Particularly intriguing are structures that display spontaneous vibrations and stochastic resonance. Previously, through molecular dynamics simulations, it was discovered that short pyridine-furan springs, when subjected to force loading, exhibit the bistable dynamics of a Duffing oscillator. In this study, we extend these simulations to include short pyridine-pyrrole and pyridine-furan springs in a hydrophobic solvent. Our findings demonstrate that these systems also display the bistable dynamics of a Duffing oscillator, accompanied by spontaneous vibrations and stochastic resonance activated by thermal noise.Comment: arXiv admin note: substantial text overlap with arXiv:2110.0409

    Static and resonant properties of decorated square kagome lattice compound KCu7_7(TeO4_4)(SO4_4)5_5Cl

    Full text link
    The magnetic subsystem of nabokoite, KCu7_7(TeO4_4)(SO4_4)5_5Cl, is constituted by buckled square kagome lattice of copper decorated by quasi-isolated Cu2+^{2+} ions. This combination determines peculiar physical properties of this compound evidenced in electron spin resonance (ESR) spectroscopy, dielectric permittivity ε\varepsilon, magnetization MM and specific heat CpC_p measurements. At lowering temperature, the magnetic susceptibility χ=M/H\chi = M/H passes through broad hump at about 150 K inherent for low-dimensional magnetic systems and evidences sharp peak at antiferromagnetic phase transition at TN=3.2T_N = 3.2 K. The Cp(T)C_p(T) curve also exhibits sharp peak at TNT_N readily suppressed by magnetic field and additional peak-like anomaly at Tpeak=5.7T_\textrm{peak}= 5.7 K robust to magnetic field. The latter can be ascribed to low-lying singlet excitations filling the singlet-triplet gap in magnetic excitation spectrum of the square kagome lattice [J.Richter, O.Derzhko and J.Schnack, Phys. Rev. B 105, 144427 (2022)]. According to position of TpeakT_\textrm{peak}, the leading exchange interaction parameter JJ in nabokoite is estimated to be about 60K. ESR spectroscopy provides indications that antiferromagnetic structure below TNT_N is non-collinear. These complex thermodynamic and resonant properties signal the presence of two weakly coupled magnetic subsystems in nabokoite, namely spin-liquid with large singlet-triplet gap and antiferromagnet represented by decorating ions. Separate issue is the observation of antiferroelectric-type behavior in ε\varepsilon at low temperatures, which tentatively reduces the symmetry and partially lifts frustration of magnetic interactions of decorating copper ions with buckled square kagome lattice.Comment: 13 pages, 13 figure

    Chemical Design Rules for Non-Fullerene Acceptors in Organic Solar Cells

    Get PDF
    Efficiencies of organic solar cells have practically doubled since the development of non-fullerene acceptors (NFAs). However, generic chemical design rules for donor-NFA combinations are still needed. Such rules are proposed by analyzing inhomogeneous electrostatic fields at the donor-acceptor interface. It is shown that an acceptor-donor-acceptor molecular architecture, and molecular alignment parallel to the interface, results in energy level bending that destabilizes the charge transfer state, thus promoting its dissociation into free charges. By analyzing a series of PCE10:NFA solar cells, with NFAs including Y6, IEICO, and ITIC, as well as their halogenated derivatives, it is suggested that the molecular quadrupole moment of ca 75 Debye A balances the losses in the open circuit voltage and gains in charge generation efficiency

    Analysis of alternative splicing of cassette exons at single-cell level using two fluorescent proteins

    Get PDF
    Alternative splicing plays a major role in increasing proteome complexity and regulating gene expression. Here, we developed a new fluorescent protein-based approach to quantitatively analyze the alternative splicing of a target cassette exon (skipping or inclusion), which results in an open-reading frame shift. A fragment of a gene of interest is cloned between red and green fluorescent protein (RFP and GFP)-encoding sequences in such a way that translation of the normally spliced full-length transcript results in expression of both RFP and GFP. In contrast, alternative exon skipping results in the synthesis of RFP only. Green and red fluorescence intensities can be used to estimate the proportions of normal and alternative transcripts in each cell. The new method was successfully tested for human PIG3 (p53-inducible gene 3) cassette exon 4. Expected pattern of alternative splicing of PIG3 minigene was observed, including previously characterized effects of UV light irradiation and specific mutations. Interestingly, we observed a broad distribution of normal to alternative transcript ratio in individual cells with at least two distinct populations with ∟45% and >95% alternative transcript. We believe that this method is useful for fluorescence-based quantitative analysis of alternative splicing of target genes in a variety of biological models

    Search for the standard model Higgs boson in the H to ZZ to 2l 2nu channel in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    A search for the standard model Higgs boson in the H to ZZ to 2l 2nu decay channel, where l = e or mu, in pp collisions at a center-of-mass energy of 7 TeV is presented. The data were collected at the LHC, with the CMS detector, and correspond to an integrated luminosity of 4.6 inverse femtobarns. No significant excess is observed above the background expectation, and upper limits are set on the Higgs boson production cross section. The presence of the standard model Higgs boson with a mass in the 270-440 GeV range is excluded at 95% confidence level.Comment: Submitted to JHE
    • …
    corecore