95 research outputs found

    On the Formation Height of the SDO/HMI Fe 6173 Doppler Signal

    Full text link
    The Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO) is designed to study oscillations and the mag- netic field in the solar photosphere. It observes the full solar disk in the Fe I absorption line at 6173\AA . We use the output of a high-resolution 3D, time- dependent, radiation-hydrodynamic simulation based on the CO5BOLD code to calculate profiles F({\lambda},x,y,t) for the Fe I 6173{\AA} line. The emerging profiles F({\lambda},x,y,t) are multiplied by a representative set of HMI filter transmission profiles R_i({\lambda},1 \leq i \leq 6) and filtergrams I_i(x,y,t;1 \leq i \leq 6) are constructed for six wavelengths. Doppler velocities V_HMI(x,y,t) are determined from these filtergrams using a simplified version of the HMI pipeline. The Doppler velocities are correlated with the original velocities in the simulated atmosphere. The cross- correlation peaks near 100 km, suggesting that the HMI Doppler velocity signal is formed rather low in the solar atmosphere. The same analysis is performed for the SOHO/MDI Ni I line at 6768\AA . The MDI Doppler signal is formed slightly higher at around 125 km. Taking into account the limited spatial resolution of the instruments, the apparent formation height of both the HMI and MDI Doppler signal increases by 40 to 50 km. We also study how uncertainties in the HMI filter-transmission profiles affect the calculated velocities.Comment: 15 pages, 11 Figure

    GENerator of reduced Organic Aerosol mechanism (GENOA v1.0): an automatic generation tool of semi-explicit mechanisms

    Get PDF
    This paper describes the GENerator of reduced Organic Aerosol mechanism (GENOA) that produces semi-explicit mechanisms for simulating the formation and evolution of secondary organic aerosol (SOA) in air quality models. Using a series of predefined reduction strategies and evaluation criteria, GENOA trains and reduces SOA mechanisms from near-explicit chemical mechanisms (e.g., the Master Chemical Mechanism – MCM) under representative atmospheric conditions. As a consequence, these trained SOA mechanisms can preserve the accuracy of detailed gas-phase chemical mechanisms on SOA formation (e.g., molecular structures of crucial organic compounds, the effect of “non-ideality”, and the hydrophilic/hydrophobic partitioning of aerosols), with a size (in terms of reaction and species numbers) that is manageable for three-dimensional (3-D) aerosol modeling (e.g., regional chemical transport models). Applied to the degradation of sesquiterpenes (as β-caryophyllene) from MCM, GENOA builds a concise SOA mechanism (2 % of the MCM size) that consists of 23 reactions and 15 species, with 6 of them being condensable. The generated SOA mechanism has been evaluated regarding its ability to reproduce SOA concentrations under the varying atmospheric conditions encountered over Europe, with an average error lower than 3 %.</p

    Effects of rotational mixing on the asteroseismic properties of solar-type stars

    Full text link
    The influence of rotational mixing on the evolution and asteroseismic properties of solar-type stars is studied. Rotational mixing changes the global properties of a solar-type star with a significant increase of the effective temperature resulting in a shift of the evolutionary track to the blue part of the HR diagram. These differences are related to changes of the chemical composition, because rotational mixing counteracts the effects of atomic diffusion leading to larger helium surface abundances for rotating models than for non-rotating ones. Higher values of the large frequency separation are then found for rotating models than for non-rotating ones at the same evolutionary stage, because the increase of the effective temperature leads to a smaller radius and hence to an increase of the stellar mean density. Rotational mixing also has a considerable impact on the structure and chemical composition of the central stellar layers by bringing fresh hydrogen fuel to the core, thereby enhancing the main-sequence lifetime. The increase of the central hydrogen abundance together with the change of the chemical profiles in the central layers result in a significant increase of the values of the small frequency separations and of the ratio of the small to large separations for models including shellular rotation. This increase is clearly seen for models with the same age sharing the same initial parameters except for the inclusion of rotation as well as for models with the same global stellar parameters and in particular the same location in the HR diagram. By computing rotating models of solar-type stars including the effects of a dynamo that possibly occurs in the radiative zone, we find that the efficiency of rotational mixing is strongly reduced when the effects of magnetic fields are taken into account, in contrast to what happens in massive stars.Comment: 11 pages, 15 figures, accepted for publication in A&

    Precursors and formation of secondary organic aerosols from wildfires in the Euro-Mediterranean region

    Get PDF
    This work aims at quantifying the relative contribution of secondary organic aerosol (SOA) precursors emitted by wildfires to organic aerosol (OA) formation during summer of 2007 over the Euro-Mediterranean region, where intense wildfires occurred. A new SOA formation mechanism, H2Oaro, including recently identified aromatic volatile organic compounds (VOCs) emitted from wildfires, is developed based on smog chamber experiment measurements under low- and high-NOx regimes. The aromatic VOCs included in the mechanism are toluene, xylene, benzene, phenol, cresol, catechol, furan, naphthalene, methylnaphthalene, syringol, guaiacol, and structurally assigned and unassigned compounds with at least six carbon atoms per molecule (USC&gt;6). This mechanism H2Oaro is an extension of the H2O (hydrophilic–hydrophobic organic) aerosol mechanism: the oxidation of the precursor forms surrogate species with specific thermodynamic properties (volatility, oxidation degree and affinity to water). The SOA concentrations over the Euro-Mediterranean region in summer of 2007 are simulated using the chemistry transport model (CTM) Polair3D of the air-quality platform Polyphemus, where the mechanism H2Oaro was implemented. To estimate the relative contribution of the aromatic VOCs, intermediate volatility, semi-volatile and low-volatility organic compounds (I/S/L-VOCs), to wildfires OA concentrations, different estimations of the gaseous I/S/L-VOC emissions (from primary organic aerosol – POA – using a factor of 1.5 or from non-methanic organic gas – NMOG – using a factor of 0.36) and their ageing (one-step oxidation vs. multi-generational oxidation) are also tested in the CTM. Most of the particle OA concentrations are formed from I/S/L-VOCs. On average during the summer of 2007 and over the Euro-Mediterranean domain, they are about 10 times higher than the OA concentrations formed from VOCs. However, locally, the OA concentrations formed from VOCs can represent up to 30&thinsp;% of the OA concentrations from biomass burning. Amongst the VOCs, the main contributors to SOA formation are phenol, benzene and catechol (CAT; 47&thinsp;%); USC&gt;6 compounds (23&thinsp;%); and toluene and xylene (12&thinsp;%). Sensitivity studies of the influence of the VOCs and the I/S/L-VOC emissions and chemical ageing mechanisms on PM2.5 concentrations show that surface PM2.5 concentrations are more sensitive to the parameterization used for gaseous I/S/L-VOC emissions than for ageing. Estimating the gaseous I/S/L-VOC emissions from POA or from NMOG has a high impact on local surface PM2.5 concentrations (reaching −30&thinsp;% in the Balkans, −8&thinsp;% to −16&thinsp;% in the fire plume and +8&thinsp;% to +16&thinsp;% in Greece). Considering the VOC as SOA precursors results in a moderate increase in PM2.5 concentrations mainly in the Balkans (up to 24&thinsp;%) and in the fire plume (+10&thinsp;%).</p

    Helioseismology of Sunspots: A Case Study of NOAA Region 9787

    Get PDF
    Various methods of helioseismology are used to study the subsurface properties of the sunspot in NOAA Active Region 9787. This sunspot was chosen because it is axisymmetric, shows little evolution during 20-28 January 2002, and was observed continuously by the MDI/SOHO instrument. (...) Wave travel times and mode frequencies are affected by the sunspot. In most cases, wave packets that propagate through the sunspot have reduced travel times. At short travel distances, however, the sign of the travel-time shifts appears to depend sensitively on how the data are processed and, in particular, on filtering in frequency-wavenumber space. We carry out two linear inversions for wave speed: one using travel-times and phase-speed filters and the other one using mode frequencies from ring analysis. These two inversions give subsurface wave-speed profiles with opposite signs and different amplitudes. (...) From this study of AR9787, we conclude that we are currently unable to provide a unified description of the subsurface structure and dynamics of the sunspot.Comment: 28 pages, 18 figure

    Complete results for five years of GNO solar neutrino observations

    Get PDF
    We report the complete GNO solar neutrino results for the measuring periods GNO III, GNO II, and GNO I. The result for GNO III (last 15 solar runs) is [54.3 + 9.9 - 9.3 (stat.)+- 2.3 (syst.)] SNU (1 sigma) or [54.3 + 10.2 - 9.6 (incl. syst.)] SNU (1 sigma) with errors combined. The GNO experiment is now terminated after altogether 58 solar exposure runs that were performed between May 20, 1998 and April 9, 2003. The combined result for GNO (I+II+III) is [62.9 + 5.5 - 5.3 (stat.) +- 2.5 (syst.)] SNU (1 sigma) or [62.9 + 6.0 - 5.9] SNU (1 sigma) with errors combined in quadrature. Overall, gallium based solar observations at LNGS (first in GALLEX, later in GNO) lasted from May 14, 1991 through April 9, 2003. The joint result from 123 runs in GNO and GALLEX is [69.3 +- 5.5 (incl. syst.)] SNU (1 sigma). The distribution of the individual run results is consistent with the hypothesis of a neutrino flux that is constant in time. Implications from the data in particle- and astrophysics are reiterated.Comment: 22 pages incl. 9 Figures and 8 Tables. to appear in: Physics Letters B (accepted April 13, 2005) PACS: 26.65.+t ; 14.60.P

    Cornering Solar Radiative-Zone Fluctuations with KamLAND and SNO Salt

    Get PDF
    We update the best constraints on fluctuations in the solar medium deep within the solar Radiative Zone to include the new SNO-salt solar neutrino measurements. We find that these new measurements are now sufficiently precise that neutrino oscillation parameters can be inferred independently of any assumptions about fluctuation properties. Constraints on fluctuations are also improved, with amplitudes of 5% now excluded at the 99% confidence level for correlation lengths in the range of several hundred km. Because they are sensitive to correlation lengths which are so short, these solar neutrino results are complementary to constraints coming from helioseismology.Comment: 4 pages, LaTeX file using RevTEX4, 6 figures include

    Properties of high-frequency wave power halos around active regions: an analysis of multi-height data from HMI and AIA onboard SDO

    Full text link
    We study properties of waves of frequencies above the photospheric acoustic cut-off of \approx5.3 mHz, around four active regions, through spatial maps of their power estimated using data from Helioseismic and Magnetic Imager (HMI) and Atmospheric Imaging Assembly (AIA) onboard Solar Dynamics Observatory (SDO). The wavelength channels 1600 {\AA} and 1700 {\AA} from AIA are now known to capture clear oscillation signals due to helioseismic p modes as well as waves propagating up through to the chromosphere. Here we study in detail, in comparison with HMI Doppler data, properties of the power maps, especially the so called 'acoustic halos' seen around active regions, as a function of wave frequencies, inclination and strength of magnetic field (derived from the vector field observations by HMI) and observation height. We infer possible signatures of (magneto-)acoustic wave refraction from the observation height dependent changes, and hence due to changing magnetic strength and geometry, in the dependences of power maps on the photospheric magnetic quantities. We discuss the implications for theories of p mode absorption and mode conversions by the magnetic field.Comment: 22 pages, 12 figures, Accepted by journal Solar Physic

    Exploration of the influence of environmental conditions on secondary organic aerosol formation and organic species properties using explicit simulations: development of the VBS-GECKO parameterization

    Get PDF
    Atmospheric chambers have been widely used to study secondary organic aerosol (SOA) properties and formation from various precursors under different controlled environmental conditions and to develop parameterization to represent SOA formation in chemical transport models (CTMs). Chamber experiments are however limited in number, performed under conditions that differ from the atmosphere and can be subject to potential artefacts from chamber walls. Here, the Generator for Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A) modelling tool has been used in a box model under various environmental conditions to (i) explore the sensitivity of SOA formation and properties to changes on physical and chemical conditions and (ii) develop a volatility basis set (VBS)-type parameterization. The set of parent hydrocarbons includes n-alkanes and 1-alkenes with 10, 14, 18, 22 and 26 carbon atoms, α-pinene, β-pinene and limonene, benzene, toluene, o-xylene, m-xylene and p-xylene. Simulated SOA yields and their dependences on the precursor structure, organic aerosol load, temperature and NOx levels are consistent with the literature. GECKO-A was used to explore the distribution of molar mass, vaporization enthalpy, OH reaction rate and Henry's law coefficient of the millions of secondary organic compounds formed during the oxidation of the different precursors and under various conditions. From these explicit simulations, a VBS-GECKO parameterization designed to be implemented in 3-D air quality models has been tuned to represent SOA formation from the 18 precursors using GECKO-A as a reference. In evaluating the ability of VBS-GECKO to capture the temporal evolution of SOA mass, the mean relative error is less than 20&thinsp;% compared to GECKO-A. The optimization procedure has been automated to facilitate the update of the VBS-GECKO on the basis of the future GECKO-A versions, its extension to other precursors and/or its modification to carry additional information.</p

    Surprising Sun

    Full text link
    Important revisions of the solar model ingredients appear after 35 years of intense work which have led to an excellent agreement between solar models and solar neutrino detections. We first show that the updated CNO composition suppresses the anomalous position of the Sun in the known galactic enrichment. The following law: He/H= 0.075 + 44.6 O/H in fraction number is now compatible with all the indicators. We then examine the existing discrepancies between the standard model and solar - seismic and neutrino - observations and suggest some directions of investigation to solve them. We update our predicted neutrino fluxes using the recent composition, new nuclear reaction rates and seismic models as the most representative of the central plasma properties. We get 5.31 +- 0.6 10^6/cm^{2}/s for the total ^8B neutrinos, 66.5 SNU and 2.76 SNU for the gallium and chlorine detectors, all in remarquable agreement with the detected values including neutrino oscillations for the last two. We conclude that the acoustic modes and detected neutrinos see the same Sun, but that clear discrepancies in solar modelling encourage further observational and theoretical efforts.Comment: 4 pages 3 figures Submitted to Phys. Rev. let
    corecore