The Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics
Observatory (SDO) is designed to study oscillations and the mag- netic field in
the solar photosphere. It observes the full solar disk in the Fe I absorption
line at 6173\AA . We use the output of a high-resolution 3D, time- dependent,
radiation-hydrodynamic simulation based on the CO5BOLD code to calculate
profiles F({\lambda},x,y,t) for the Fe I 6173{\AA} line. The emerging profiles
F({\lambda},x,y,t) are multiplied by a representative set of HMI filter
transmission profiles R_i({\lambda},1 \leq i \leq 6) and filtergrams
I_i(x,y,t;1 \leq i \leq 6) are constructed for six wavelengths. Doppler
velocities V_HMI(x,y,t) are determined from these filtergrams using a
simplified version of the HMI pipeline. The Doppler velocities are correlated
with the original velocities in the simulated atmosphere. The cross-
correlation peaks near 100 km, suggesting that the HMI Doppler velocity signal
is formed rather low in the solar atmosphere. The same analysis is performed
for the SOHO/MDI Ni I line at 6768\AA . The MDI Doppler signal is formed
slightly higher at around 125 km. Taking into account the limited spatial
resolution of the instruments, the apparent formation height of both the HMI
and MDI Doppler signal increases by 40 to 50 km. We also study how
uncertainties in the HMI filter-transmission profiles affect the calculated
velocities.Comment: 15 pages, 11 Figure