100 research outputs found

    Is activation of the vestibular system by electromagnetic induction a possibility in an MRI context?

    Get PDF
    In recent years, an increasing number of studies have discussed the mechanisms of vestibular activation in strong magnetic field settings such as occur in a magnetic resonance imaging scanner environment. Amid the different hypotheses, the Lorentz force explanation currently stands out as the most plausible mechanism, as evidenced by activation of the vestibulo‐ocular reflex. Other hypotheses have largely been discarded. Nonetheless, both human data and computational modeling suggest that electromagnetic induction could be a valid mechanism which may coexist alongside the Lorentz force. To further investigate the induction hypothesis, we provide, herein, a first of its kind dosimetric analysis to estimate the induced electric fields at the vestibular system and compare them with what galvanic vestibular stimulation would generate. We found that electric fields strengths from induction match galvanic vestibular stimulation strengths generating vestibular responses. This review examines the evidence in support of electromagnetic induction of vestibular responses, and whether movement‐induced time‐varying magnetic fields should be further considered and investigated

    Absorption, conjugation and excretion of the flavanones, naringenin and hesperetin from α-rhamnosidase-treated orange juice in human subjects

    Get PDF
    We have determined the absorption, conjugation and excretion of naringenin-7-O-rutinoside (narirutin) compared to the corresponding glucoside in an orange juice matrix in human subjects. Healthy volunteers (eight men and eight women), in a double blind, randomised, crossover study, consumed orange juice with (1) natural content of naringenin-7-O-rutinoside; (2) α-rhamnosidase-treated to yield naringenin-7-O-glucoside. Blood was sampled at twelve time points and three fractions of urine were collected over 24h. The area under the plasma-time curve of naringenin from (2) α-rhamnosidase-treated orange juice was increased about 4-fold (P<0·0001), peak plasma concentration (Cmax) was 5·4-fold higher (P<0·0001) and Tmax was decreased from 311 to 92min (P=0·002) compared to untreated orange juice (1), indicating a change in absorption site from the colon to the small intestine. Furthermore, the amount in urine was increased from 7 to 47% (P<0·0001) of the dose after consumption of the α-rhamnosidase-treated orange juice (2). All urine samples contained both naringenin-7- and -4′-O-glucuronides. In addition, to examine the effect of dose and α-rhamnosidase treatment on hesperetin conjugate profiles, a further treatment where (3) orange juice fortified with three times the original content of hesperetin-7-O-rutinoside was used. Five hesperetin metabolites (3′-O-glucuronide; 7-O-glucuronide; 5,7-O-diglucuronide; 3′,7-O-diglucuronide; 3′-O-sulphate) were present after all treatments (1-3), with the same profile of the conjugates. The present data show that bioavailability of naringenin is increased by conversion from rutinoside to glucoside, but the profile of the conjugates of flavanones formed and excreted in urine is neither affected by the absorption site nor by a 3-fold change in dos

    The H2020-SPACE-SIPHODIAS project: Space-grade optoelectronic interfaces for photonic digital and analogue very-high-throughput satellite payloads

    Get PDF
    The EU-SIPhoDiAS project deals with the development of critical photonic building blocks needed for high-performance and low size, weight, and power (SWaP) photonics-enabled Very High Throughput Satellites (VHTS). In this presentation, we report on the design and fabrication activities during the first year of the project concerning the targeted family of digital and microwave photonic components. This effort aims to demonstrate components of enhanced reliability at technology readiness level (TRL) 7. Specifically, with respect to microwave photonic links, we report: (i) the design of Ka and Q-bands analogue photodetectors that will be assembled in compact packages, allowing for very high bandwidth per unit area and (ii) on the design of compact V-band GaAs electro-optic modulator arrays, which use a folded-path optical configuration to manage all fiber interfaces packaged opposite direct in-line RF feeds for ease of board layouts and mass/size benefits. With respect to digital links, we report on the development of 100 Gb/s (4 x 25 Gb/s) digital optical transceiver sub-assemblies developed using flip-chip mounting of electronic and opto-parts on a high-reliability borosilicate substrate. The transceiver chipset developed specifically for this project refers to fully-custom 25 Gb/s radiation hard (RH) VCSEL driver and TIA ICs designed in IHP’s 130 nm SiGe BiCMOS Rad-Hard process

    Radio-frequency ablation as primary management of well-tolerated sustained monomorphic ventricular tachycardia in patients with structural heart disease and left ventricular ejection fraction over 30%.

    Get PDF
    AIMS: Patients with well-tolerated sustained monomorphic ventricular tachycardia (SMVT) and left ventricular ejection fraction (LVEF) over 30% may benefit from a primary strategy of VT ablation without immediate need for a 'back-up' implantable cardioverter-defibrillator (ICD). METHODS AND RESULTS: One hundred and sixty-six patients with structural heart disease (SHD), LVEF over 30%, and well-tolerated SMVT (no syncope) underwent primary radiofrequency ablation without ICD implantation at eight European centres. There were 139 men (84%) with mean age 62 ± 15 years and mean LVEF of 50 ± 10%. Fifty-five percent had ischaemic heart disease, 19% non-ischaemic cardiomyopathy, and 12% arrhythmogenic right ventricular cardiomyopathy. Three hundred seventy-eight similar patients were implanted with an ICD during the same period and serve as a control group. All-cause mortality was 12% (20 patients) over a mean follow-up of 32 ± 27 months. Eight patients (40%) died from non-cardiovascular causes, 8 (40%) died from non-arrhythmic cardiovascular causes, and 4 (20%) died suddenly (SD) (2.4% of the population). All-cause mortality in the control group was 12%. Twenty-seven patients (16%) had a non-fatal recurrence at a median time of 5 months, while 20 patients (12%) required an ICD, of whom 4 died (20%). CONCLUSION: Patients with well-tolerated SMVT, SHD, and LVEF &gt; 30% undergoing primary VT ablation without a back-up ICD had a very low rate of arrhythmic death and recurrences were generally non-fatal. These data would support a randomized clinical trial comparing this approach with others incorporating implantation of an ICD as a primary strategy

    SEIS: Insight’s Seismic Experiment for Internal Structure of Mars

    Get PDF
    By the end of 2018, 42 years after the landing of the two Viking seismometers on Mars, InSight will deploy onto Mars’ surface the SEIS (Seismic Experiment for Internal Structure) instrument; a six-axes seismometer equipped with both a long-period three-axes Very Broad Band (VBB) instrument and a three-axes short-period (SP) instrument. These six sensors will cover a broad range of the seismic bandwidth, from 0.01 Hz to 50 Hz, with possible extension to longer periods. Data will be transmitted in the form of three continuous VBB components at 2 sample per second (sps), an estimation of the short period energy content from the SP at 1 sps and a continuous compound VBB/SP vertical axis at 10 sps. The continuous streams will be augmented by requested event data with sample rates from 20 to 100 sps. SEIS will improve upon the existing resolution of Viking’s Mars seismic monitoring by a factor of ∼ 2500 at 1 Hz and ∼ 200 000 at 0.1 Hz. An additional major improvement is that, contrary to Viking, the seismometers will be deployed via a robotic arm directly onto Mars’ surface and will be protected against temperature and wind by highly efficient thermal and wind shielding. Based on existing knowledge of Mars, it is reasonable to infer a moment magnitude detection threshold of Mw ∼ 3 at 40◦ epicentral distance and a potential to detect several tens of quakes and about five impacts per year. In this paper, we first describe the science goals of the experiment and the rationale used to define its requirements. We then provide a detailed description of the hardware, from the sensors to the deployment system and associated performance, including transfer functions of the seismic sensors and temperature sensors. We conclude by describing the experiment ground segment, including data processing services, outreach and education networks and provide a description of the format to be used for future data distribution

    La revascularisation du patient coronarien stable

    No full text

    Integrated electromyographical activity and muscle work.

    No full text
    corecore