250 research outputs found

    First interstellar detection of OH+

    Full text link
    The Atacama Pathfinder Experiment (APEX) 12m telescope was used to observe the N=1-0, J=0-1 ground state transitions of OH+ at 909.1588 GHz with the CHAMP+ heterodyne array receiver. Two blended hyperfine structure transitions were detected in absorption against the strong continuum source Sagittarius B2(M) and in several pixels offset by 18". Both, absorption from Galactic center gas as well as absorption from diffuse clouds in intervening spiral arms in a velocity range from -116 to 38.5 km/s is observed. The total OH+ column density of absorbing gas is 2.4 \times 10^15 cm-2. A column density local to Sgr B2(M) of 2.6 \times 10^14 cm-2 is found. On the intervening line-of-sight the column density per unit velocity interval are in the range from 1 to 40 \times 10^12 cm-2/(km/s). OH+ is found to be on average more abundant than other hydrides such as SH+ and CH+. Abundance ratios of OH and atomic oxygen to OH+ are found to be in the range of 10^1-2 and 10^3-4, respectively. The detected absorption of a continuous velocity range on the line-of-sight shows OH+ to be an abundant component of diffuse clouds.Comment: 5 pages, 4 figures. Accepted for publication in Astronomy and Astrophysic

    Organics in comet 67P – a first comparative analysis of mass spectra from ROSINA–DFMS, COSAC and Ptolemy

    Get PDF
    The ESA Rosetta spacecraft followed comet 67P at a close distance for more than 2 yr. In addition, it deployed the lander Philae on to the surface of the comet. The (surface) composition of the comet is of great interest to understand the origin and evolution of comets. By combining measurements made on the comet itself and in the coma, we probe the nature of this surface material and compare it to remote sensing observations. We compare data from the double focusing mass spectrometer (DFMS) of the ROSINA experiment on ESA's Rosetta mission and previously published data from the two mass spectrometers COSAC (COmetary Sampling And Composition) and Ptolemy on the lander. The mass spectra of all three instruments show very similar patterns of mainly CHO-bearing molecules that sublimate at temperatures of 275 K. The DFMS data also show a great variety of CH-, CHN-, CHS-, CHO2- and CHNO-bearing saturated and unsaturated species. Methyl isocyanate, propanal and glycol aldehyde suggested by the earlier analysis of the measured COSAC spectrum could not be confirmed. The presence of polyoxymethylene in the Ptolemy spectrum was found to be unlikely. However, the signature of the aromatic compound toluene was identified in DFMS and Ptolemy data. Comparison with remote sensing instruments confirms the complex nature of the organics on the surface of 67P, which is much more diverse than anticipated

    Calibration of parent and fragment ion detection rates in Rosettas ROSINA/DFMS mass spectrometer

    Get PDF
    The Double Focusing Mass Spectrometer DFMS embarked on the European Space Agency’s Rosetta mission as part of the ROSINA instrument suite. It boasts a high mass resolution and a high sensitivity, which have guaranteed spectacular discoveries during Rosetta’s rendez-vous with comet 67P/Churyumov-Gerasimenko. This paper describes the DFMS data calibration procedure for determining the parent and fragment ion count rates in the neutral mode, which serve as the basis for retrieving the neutral gas densities. A new approach to computing secondary electron yields is presented. Attention is given to an analysis of the mass peak shapes, which change with magnet temperature. Discrete counting statistical effects also affect the peak shape at low counts. If not accounted for, changes of mass peak shape can induce errors of up to 20% on the determination of the ion fluxes. An assessment of the different sources of uncertainty on the obtained count rates and ratios of count rates is presented

    Mountains of our future Earth: Defining priorities for mountain research

    Get PDF
    The Perth conferences, held every 5 years in Perth, Scotland, bring together people who identify as mountain researchers and who are interested in issues related to global change in mountain social-ecological systems. These conferences provide an opportunity to evaluate the evolution of research directions within the mountain research community, as well as to identify research priorities. The Future Earth Strategic Research Agenda provides a useful framework for evaluating the mountain research community\u27s progress toward addressing global change and sustainability challenges. Using a process originally set up to analyze contributions to the 2010 conference, the abstracts accepted for the 2015 conference in the context of the Future Earth framework were analyzed. This revealed a continued geographic underrepresentation in mountain research of Africa, Latin America, and South and Southeast Asia but a more even treatment of biophysical and social science themes than in 2010. It also showed that the Perth conference research community strongly focused on understanding system processes (the Dynamic Planet theme of the Future Earth research agenda). Despite the continued bias of conference contributions toward traditional observation- and conservation-oriented research, survey results indicate that conference participants clearly believe that transdisciplinary, transformative research is relevant to mountains. Of the 8 Future Earth focal challenges, those related to safeguarding natural assets, promoting sustainable land use, increasing resilience and understanding the water-energy-food nexus received considerable attention. The challenges related to sustainable consumption, decarbonizing socioeconomic systems, cities, and health were considerably less well represented, despite their relevance to mountain socioeconomic systems. Based on these findings, we outline a proposal for the future directions of mountain research

    The <i>Castalia</i> mission to Main Belt Comet 133P/Elst-Pizarro

    Get PDF
    We describe Castalia, a proposed mission to rendezvous with a Main Belt Comet (MBC), 133P/Elst-Pizarro. MBCs are a recently discovered population of apparently icy bodies within the main asteroid belt between Mars and Jupiter, which may represent the remnants of the population which supplied the early Earth with water. Castalia will perform the first exploration of this population by characterising 133P in detail, solving the puzzle of the MBC’s activity, and making the first in situ measurements of water in the asteroid belt. In many ways a successor to ESA’s highly successful Rosetta mission, Castalia will allow direct comparison between very different classes of comet, including measuring critical isotope ratios, plasma and dust properties. It will also feature the first radar system to visit a minor body, mapping the ice in the interior. Castalia was proposed, in slightly different versions, to the ESA M4 and M5 calls within the Cosmic Vision programme. We describe the science motivation for the mission, the measurements required to achieve the scientific goals, and the proposed instrument payload and spacecraft to achieve these

    Conversion of Vertical Banded Gastroplasty to Roux-en-Y Gastric Bypass Results in Restoration of the Positive Effect on Weight Loss and Co-morbidities: Evaluation of 101 Patients

    Get PDF
    BACKGROUND: Vertical banded gastroplasty (VBG) is a widely used restrictive procedure in bariatric surgery. However, the re-operation rate after this operation is high. In the case of VBG failure, a conversion to Roux-en-Y gastric bypass (RYGBP) is an option. A study was undertaken to evaluate the results of the conversion from VBG to RYGBP. METHODS: 101 patients had conversion from VBG to RYGBP. Patients were separated into 3 groups, based on the indication for conversion: weight regain (group 1), excessive weight loss (group 2) and severe eating difficulties (group 3). Data for the study were collected by retrospective analysis of prospectively recorded data. RESULTS: Weight regain (group 1) was the reason for conversion in 73.3% of patients. Staple-line disruption was the most important cause for the weight regain (74.3%). Excessive weight loss (group 2) affected 14% of patients and was caused by outlet stenosis in 78.6% of patients. The remaining 13% had severe eating difficulties as a result of outlet stenosis (46.1%), pouch dilatation (30.8%) and pouch diverticula (23.1%). Mean BMI before conversion to RYGBP was 40.5, 22.3 and 29.8 kg/m2 in group 1, 2 and 3, respectively. Minor or major direct postoperative complications were observed in 2.0% to 7.0%. Long-term complications were more frequent, and consisted mainly of anastomotic stenosis (22.7%) and incisional hernia (16.8%). Follow-up after conversion was achieved in all patients (100%), with a mean period of 38 +/- 29 months. BMI decreased from 40.5 to 30.1 kg/m2, increased from 22.3 to 25.3 kg/m2. and decreased slightly from 29.8 to 29.0 kg/m2 in group 1, 2 and 3, respectively. All patients in group 3 noticed an improvement in eating difficulties. CONCLUSION: Complications after conversion from failed VBG to RYGBP are substantial and need to be considered. However, the conversion itself is a successful operation in terms of effect on body weight and treating eating difficulties after VBG

    The Main Belt Comets and ice in the Solar System

    Get PDF
    We review the evidence for buried ice in the asteroid belt; specifically the questions around the so-called Main Belt Comets (MBCs). We summarise the evidence for water throughout the Solar System, and describe the various methods for detecting it, including remote sensing from ultraviolet to radio wavelengths. We review progress in the first decade of study of MBCs, including observations, modelling of ice survival, and discussion on their origins. We then look at which methods will likely be most effective for further progress, including the key challenge of direct detection of (escaping) water in these bodies
    corecore