488 research outputs found

    Dynamics of contact line motion during the wetting of rough surfaces and correlation with topographical surface parameters

    Get PDF
    Dynamics of contact line motion and wettability is essential in many industrial applications such as liquid coating, lubrication, printing, painting, condensation, etc. However, the wettability of surfaces depends not only on liquid–solid chemical properties but also can be strongly affected by surface roughness. As a practical application of controlled wettability, we can mention the self-cleaning surfaces, protective clothing, microfluidics devices, electro wetting, etc. In this article, we experimentally investigate the spreading of droplets deposited onto rough surfaces. Anisotropic surfaces were prepared by abrasive polishing on the following materials: aluminium alloy AA7064, titanium alloy Ti-6Al-4V, steel AISI 8630, copper alloy UNS C17000, machinable glass ceramic, and poly-methylmethacrylate. Topographical 2D parameters were calculated according to the following standards, defining Geometrical Product Specifications (GPS): ISO 4287, ISO 12085, ISO 13565, ISO 12780, and ISO 12181. The influence of topographical parameters on wettability and spreading phenomenon has been evaluated by statistical covariance analysis. The following parameters have strong influence on fluid spreading on rough surfaces: Rmr is the relative material ratio of the roughness profile, Trc is the microgeometric material ratio, Pmr is the relative material ratio of the raw profile, Kr is the mean slope of the roughness motifs, RONt is the peak to valley roundness deviation, and Psk is the Skewness of the raw profile. The physical meaning of selected parameters is discussed, and Kr (the mean slope of the roughness motifs) is selected as the most important and physically meaningful parameter. It has been found that for all tested materials, fluid spreading shows increasing tendency when mean slope of the roughness motifs (Kr) increases. SCANNING 33: 1–8, 2011. © 2011 Wiley Periodicals, Inc

    Wettability versus roughness of engineering surfaces

    Get PDF
    Wetting of real engineering surfaces occurs in many industrial applications (liquid coating, lubrication, printing, painting, ...). Forced and natural wetting can be beneficial in many cases, providing lubrication and therefore reducing friction and wear. However the wettability of surfaces can be strongly affected by surface roughness. This influence can be very significant for static and dynamic wetting [1]. In this paper authors experimentally investigate the roughness influence on contact angle measurements and propose a simple model combining Wenzel and Cassie-Baxter theories with simple 2D roughness profile analysis. The modelling approach is applied to real homogeneous anisotropic surfaces, manufactured on a wide range of engineering materials including aluminium alloy, iron alloy, copper, ceramic, plastic (poly-methylmethacrylate: PMMA) and titanium alloy

    Oscillating Fracture in Rubber

    Full text link
    We have found an oscillating instability of fast-running cracks in thin rubber sheets. A well-defined transition from straight to oscillating cracks occurs as the amount of biaxial strain increases. Measurements of the amplitude and wavelength of the oscillation near the onset of this instability indicate that the instability is a Hopf bifurcation

    FINE: Fisher Information Non-parametric Embedding

    Full text link
    We consider the problems of clustering, classification, and visualization of high-dimensional data when no straightforward Euclidean representation exists. Typically, these tasks are performed by first reducing the high-dimensional data to some lower dimensional Euclidean space, as many manifold learning methods have been developed for this task. In many practical problems however, the assumption of a Euclidean manifold cannot be justified. In these cases, a more appropriate assumption would be that the data lies on a statistical manifold, or a manifold of probability density functions (PDFs). In this paper we propose using the properties of information geometry in order to define similarities between data sets using the Fisher information metric. We will show this metric can be approximated using entirely non-parametric methods, as the parameterization of the manifold is generally unknown. Furthermore, by using multi-dimensional scaling methods, we are able to embed the corresponding PDFs into a low-dimensional Euclidean space. This not only allows for classification of the data, but also visualization of the manifold. As a whole, we refer to our framework as Fisher Information Non-parametric Embedding (FINE), and illustrate its uses on a variety of practical problems, including bio-medical applications and document classification.Comment: 30 pages, 21 figure

    Directional wetting in anisotropic inverse opals

    Get PDF
    Porous materials display interesting transport phenomena due to the restricted motion of fluids within the nano- to micro-scale voids. Here, we investigate how liquid wetting in highly ordered inverse opals is affected by anisotropy in pore geometry. We compare samples with different degrees of pore asphericity and find different wetting patterns depending on the pore shape. Highly anisotropic structures are infiltrated more easily than their isotropic counterparts. Further, the wetting of anisotropic inverse opals is directional, with liquids filling from the side more easily. This effect is supported by percolation simulations as well as direct observations of wetting using time-resolved optical microscopy

    Immersed superhydrophobic surfaces: Gas exchange, slip and drag reduction properties

    Get PDF
    Superhydrophobic surfaces combine high aspect ratio micro- or nano-topography and hydrophobic surface chemistry to create super water-repellent surfaces. Most studies consider their effect on droplets, which ball-up and roll-off. However, their properties are not restricted to modification of the behaviour of droplets, but potentially influence any process occurring at the solid-liquid interface. Here, we highlight three recent developments focused on the theme of immersed superhydrophobic surfaces. The first illustrates the ability of a superhydrophobic surface to act as a gas exchange membrane, the second demonstrates a reduction in drag during flow through small tubes and the third considers a macroscopic experiment demonstrating an increase in the terminal velocity of settling spheres

    The superhydrophobicity of polymer surfaces: Recent developments

    Get PDF
    Superhydrophobicity is the extreme water repellence of highly textured surfaces. The field of superhydrophobicity research has reached a stage where huge numbers of candidate treatments have been proposed and jumps have been made in theoretically describing them. There now seems to be a move to more practical concerns and to considering the demands of individual applications instead of more general cases. With these developments, polymeric surfaces with their huge variety of properties have come to the fore and are fast becoming the material of choice for designing, developing, and producing superhydrophobic surfaces. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 49: 1203–1217, 201

    Self-similarity of contact line depinning from textured surfaces

    Get PDF
    The mobility of drops on surfaces is important in many biological and industrial processes, but the phenomena governing their adhesion, which is dictated by the morphology of the three-phase contact line, remain unclear. Here we describe a technique for measuring the dynamic behaviour of the three-phase contact line at micron length scales using environmental scanning electron microscopy. We examine a superhydrophobic surface on which a drop’s adhesion is governed by capillary bridges at the receding contact line. We measure the microscale receding contact angle of each bridge and show that the Gibbs criterion is satisfied at the microscale. We reveal a hitherto unknown self-similar depinning mechanism that shows how some hierarchical textures such as lotus leaves lead to reduced pinning, and counter-intuitively, how some lead to increased pinning. We develop a model to predict adhesion force and experimentally verify the model’s broad applicability on both synthetic and natural textured surfaces.National Science Foundation (U.S.) (CAREER Award 0952564)DuPont MIT AllianceNational Science Foundation (U.S.). Graduate Research Fellowship ProgramNational Science Foundation (U.S.) (Award ECS-0335765
    • …
    corecore