37 research outputs found

    Experimentally increased snow depth affects high Arctic microarthropods inconsistently over two consecutive winters

    Get PDF
    Climate change induced alterations to winter conditions may afect decomposer organisms controlling the vast carbon stores in northern soils. Soil microarthropods are particularly abundant decomposers in Arctic ecosystems. We studied whether increased snow depth afected microarthropods, and if efects were consistent over two consecutive winters. We sampled Collembola and soil mites from a snow accumulation experiment at Svalbard in early summer and used soil microclimatic data to explore to which aspects of winter climate microarthropods are most sensitive. Community densities difered substantially between years and increased snow depth had inconsistent efects. Deeper snow hardly afected microarthropods in 2015, but decreased densities and altered relative abundances of microarthropods and Collembola species after a milder winter in 2016. Although increased snow depth increased soil temperatures by 3.2 °C throughout the snow cover periods, the best microclimatic predictors of microarthropod density changes were spring soil temperature and snowmelt day. Our study shows that extrapolation of observations of decomposer responses to altered winter climate conditions to future scenarios should be avoided when communities are only sampled on a single occasion, since efects of longer-term gradual changes in winter climate may be obscured by interannual weather variability and natural variability in population sizes

    Resistance of subarctic soil fungal and invertebrate communities to disruption of below‐ground carbon supply

    Get PDF
    The supply of recent photosynthate from plants to soils is thought to be a critical mechanism regulating the activity and diversity of soil biota. In the Arctic, large-scale vegetation transitions are underway in response to warming, and there is an urgent need to understand how these changes affect soil biodiversity and function. We investigated how abundance and diversity of soil fungi and invertebrates responded to a reduction in fresh below-ground photosynthate supply in treeline birch and willow, achieved using stem girdling. We hypothesised that birch forest would support greater abundance of ectomycorrhizal (ECM) fungal species and fauna than willow shrubs, and that girdling would result in a rapid switch from ECM fungi to saprotrophs as canopy supply of C was cut, with a concomitant decline in soil fauna. Birch forest had greater fungal and faunal abundance with a large contribution of root-associated ascomycetes (ericoid mycorrhizal fungi and root endophytes) compared to willow shrub plots, which had a higher proportion of saprotrophs and, contrary to our expectations, ECM fungi. Broad-scale soil fungal and faunal functional group composition was not significantly changed by girdling, even in the third year of treatment. Within the ECM community, there were some changes, with genera that are believed to be particularly C-demanding declining in girdled plots. However, it was notable how most ECM fungi remained present after 3 years of isolation of the below-ground compartment from contemporary photosynthate supply. Synthesis. In a treeline/tundra ecosystem, distinct soil communities existed in contrasting vegetation patches within the landscape, but the structure of these communities was resistant to canopy disturbance and concomitant reduction of autotrophic C inputs

    Globally invariant metabolism but density-diversity mismatch in springtails.

    Get PDF
    Soil life supports the functioning and biodiversity of terrestrial ecosystems. Springtails (Collembola) are among the most abundant soil arthropods regulating soil fertility and flow of energy through above- and belowground food webs. However, the global distribution of springtail diversity and density, and how these relate to energy fluxes remains unknown. Here, using a global dataset representing 2470 sites, we estimate the total soil springtail biomass at 27.5 megatons carbon, which is threefold higher than wild terrestrial vertebrates, and record peak densities up to 2 million individuals per square meter in the tundra. Despite a 20-fold biomass difference between the tundra and the tropics, springtail energy use (community metabolism) remains similar across the latitudinal gradient, owing to the changes in temperature with latitude. Neither springtail density nor community metabolism is predicted by local species richness, which is high in the tropics, but comparably high in some temperate forests and even tundra. Changes in springtail activity may emerge from latitudinal gradients in temperature, predation and resource limitation in soil communities. Contrasting relationships of biomass, diversity and activity of springtail communities with temperature suggest that climate warming will alter fundamental soil biodiversity metrics in different directions, potentially restructuring terrestrial food webs and affecting soil functioning

    Global fine-resolution data on springtail abundance and community structure

    Get PDF
    Springtails (Collembola) inhabit soils from the Arctic to the Antarctic and comprise an estimated ~32% of all terrestrial arthropods on Earth. Here, we present a global, spatially-explicit database on springtail communities that includes 249,912 occurrences from 44,999 samples and 2,990 sites. These data are mainly raw sample-level records at the species level collected predominantly from private archives of the authors that were quality-controlled and taxonomically-standardised. Despite covering all continents, most of the sample-level data come from the European continent (82.5% of all samples) and represent four habitats: woodlands (57.4%), grasslands (14.0%), agrosystems (13.7%) and scrublands (9.0%). We included sampling by soil layers, and across seasons and years, representing temporal and spatial within-site variation in springtail communities. We also provided data use and sharing guidelines and R code to facilitate the use of the database by other researchers. This data paper describes a static version of the database at the publication date, but the database will be further expanded to include underrepresented regions and linked with trait data.</p

    Dispersal of bacteria and stimulation of permafrost decomposition by Collembola

    Get PDF
    Contrary to most soils, permafrost soils have the atypical feature of being almost entirely deprived of soil fauna. Abiotic constraints on the fate of permafrost carbon after thawing are increasingly understood, but biotic constraints remain scarcely investigated. Incubation studies, essential to estimate effects of permafrost thaw on carbon cycling, typically measure the consequences of permafrost thaw in isolation from the topsoil and thus do not account for the effects of altered biotic interactions because of e.g. colonization by soil fauna. Microarthropods facilitate the dispersal of microorganisms in soil, both on their cuticle (ectozoochory) and through their digestive tract (endozoochory), which may be particularly important in permafrost soils, considering that microbial community composition can strongly constrain permafrost biogeochemical processes. Here we tested how a model species of microarthropod (the Collembola Folsomia candida) affected aerobic CO2 production of permafrost soil over a 25 d incubation. By using Collembola stock cultures grown on permafrost soil or on an arctic topsoil, we aimed to assess the potential for endo- and ectozoochory of soil bacteria, while cultures grown on gypsum and sprayed with soil suspensions would allow the observation of only ectozoochory. The presence of Collembola introduced bacterial amplicon sequence variants (ASVs) absent in the no-Collembola control, regardless of their microbiome manipulation, when considering presence-absence metrics (unweighted UniFrac metrics), which resulted in increased species richness. However, these introduced ASVs did not induce changes in bacterial community composition as a whole (accounting for relative abundances, weighted UniFrac), which might only become detectable in the longer term. CO2 production was increased by 25.85 % in the presence of Collembola, about half of which could be attributed to Collembola respiration based on respiration rates measured in the absence of soil. We argue that the rest of the CO2 being respired can be considered a priming effect of the presence of Collembola, i.e. a stimulation of permafrost CO2 production in the presence of active microarthropod decomposers. Overall, our findings underline the importance of biotic interactions in permafrost biogeochemical processes and the need to explore the additive or interactive effects of other soil food web groups of which permafrost soils are deprived

    The Legacy Effects of Winter Climate on Microbial Functioning After Snowmelt in a Subarctic Tundra

    Get PDF
    Warming-induced increases in microbial CO2 release in northern tundra may positively feedback to climate change. However, shifts in microbial extracellular enzyme activities (EEAs) may alter the impacts of warming over the longer term. We investigated the in situ effects of 3years of winter warming in combination with the in vitro effects of a rapid warming (6days) on microbial CO2 release and EEAs in a subarctic tundra heath after snowmelt in spring. Winter warming did not change microbial CO2 release at ambient (10 degrees C) or at rapidly increased temperatures, i.e., a warm spell (18 degrees C) but induced changes (P<0.1) in the Q(10) of microbial respiration and an oxidative EEA. Thus, although warmer winters may induce legacy effects in microbial temperature acclimation, we found no evidence for changes in potential carbon mineralization after spring thaw

    Plant expansion drives bacteria and collembola communities under winter climate change in frost-affected tundra

    No full text
    At high latitudes, winter warming facilitates vegetation expansion into barren frost-affected soils. The interplay of changes in winter climate and plant presence may alter soil functioning via effects on decomposers. Responses of decomposer soil fauna and microorganisms to such changes likely differ from each other, since their life histories, dispersal mechanisms and microhabitats vary greatly. We investigated the relative impacts of short-term winter warming and increases in plant cover on bacteria and collembola community composition in cryoturbated, non-sorted circle tundra. By covering non-sorted circles with insulating gardening fibre cloth (fleeces) or using stone walls accumulating snow, we imposed two climate-change scenarios: snow accumulation increased autumn-to-late winter soil temperatures (−1 cm) by 1.4 °C, while fleeces warmed soils during that period by 1 °C and increased spring temperatures by 1.1 °C. Summer bacteria and collembola communities were sampled from within-circle locations differing in vegetation abundance and soil properties. Two years of winter warming had no effects on either decomposer community. Instead, their community compositions were strongly determined by sampling location: communities in barren circle centres were distinct from those in vegetated outer rims, while communities in sparsely vegetated patches of circle centres were intermediate. Diversity patterns indicate that collembola communities are tightly linked to plant presence while bacteria communities correlated with soil properties. Our results thus suggest that direct effects of short-term winter warming are likely to be minimal, but that vegetation encroachment on barren cryoturbated ground will affect decomposer community composition substantially. At decadal timescales, collembola community changes may follow relatively fast after warming-driven plant establishment into barren areas, whereas bacteria communities may take longer to respond. If shifts in decomposer community composition are indicative for changes in their activity, vegetation overgrowth will likely have much stronger effects on soil functioning in frost-affected tundra than short-term winter warming
    corecore