32 research outputs found

    Formation of Compact Stellar Clusters by High-Redshift Galaxy Outflows II: Effect of Turbulence and Metal-Line Cooling

    Full text link
    In the primordial universe, low mass structures with virial temperatures less than 104^{4} K were unable to cool by atomic line transitions, leading to a strong suppression of star formation. On the other hand, these "minihalos" were highly prone to triggered star formation by interactions from nearby galaxy outflows. In Gray & Scannapieco (2010), we explored the impact of nonequilibrium chemistry on these interactions. Here we turn our attention to the role of metals, carrying out a series of high-resolution three-dimensional adaptive mesh refinement simulations that include both metal cooling and a subgrid turbulent mixing model. Despite the presence of an additional coolant, we again we find that outflow-minihalo interactions produce a distribution of dense, massive stellar clusters. We also find that these clusters are evenly enriched with metals to a final abundance of Z \approx 102^{-2} Z_{\odot}. As in our previous simulations, all of these properties suggest that these interactions may have given rise to present-day halo globular clusters.Comment: 14 pages, 8 figures, Accepted to Ap

    Formation of Compact Stellar Clusters by High-Redshift Galaxy Outflows III: Observability and Connection to Halo Globular Clusters

    Full text link
    The early universe hosted a large population of low-mass virialized "minihalos," that were not massive enough to form stars on their own. While most minihalos were photoevaporated by ionizing photons from star-forming galaxies, these galaxies also drove large outflows, which in some cases would have reached the minihalos in advance of ionization fronts. In the previous papers in this series, we carried out high-resolution, three-dimensional adaptive mesh refinement simulations of outflow-minihalo interactions that included non-equilibrium chemistry, radiative cooling, and turbulent mixing. We found that, for a fiducial set of parameters, minihalos were transformed into dense, chemically homogenous stellar clusters. Here we conduct a suite of simulations that follow these interactions over a wide range of parameters including minihalo mass, minihalo formation redshift, outflow energy, outflow redshift, distance, concentration, and spin. In almost all cases, the shocked minihalos form molecules through nonequillibrium reactions and then cool rapidly to become compact, chemically-homogenous stellar clusters. Furthermore, we show that the unique properties of these clusters make them a prime target for direct study with the next generation of telescopes, and that there are many reasons to suspect that their low-redshift counterparts are the observed population of halo globular clusters.Comment: 19 pages, 17 figures. Accepted to the Astrophysical Journa

    Scavenging in the Anthropocene: Human impact drives vertebrate scavenger species richness at a global scale

    Get PDF
    Understanding the distribution of biodiversity across the Earth is one of the most challenging questions in biology. Much research has been directed at explaining the species latitudinal pattern showing that communities are richer in tropical areas; however, despite decades of research, a general consensus has not yet emerged. In addition, global biodiversity patterns are being rapidly altered by human activities. Here, we aim to describe large‐scale patterns of species richness and diversity in terrestrial vertebrate scavenger (carrion‐consuming) assemblages, which provide key ecosystem functions and services. We used a worldwide dataset comprising 43 sites, where vertebrate scavenger assemblages were identified using 2,485 carcasses monitored between 1991 and 2018. First, we evaluated how scavenger richness (number of species) and diversity (Shannon diversity index) varied among seasons (cold vs. warm, wet vs. dry). Then, we studied the potential effects of human impact and a set of macroecological variables related to climatic conditions on the scavenger assemblages. Vertebrate scavenger richness ranged from species‐poor to species rich assemblages (4–30 species). Both scavenger richness and diversity also showed some seasonal variation. However, in general, climatic variables did not drive latitudinal patterns, as scavenger richness and diversity were not affected by temperature or rainfall. Rainfall seasonality slightly increased the number of species in the community, but its effect was weak. Instead, the human impact index included in our study was the main predictor of scavenger richness. Scavenger assemblages in highly human‐impacted areas sustained the smallest number of scavenger species, suggesting human activity may be overriding other macroecological processes in shaping scavenger communities. Our results highlight the effect of human impact at a global scale. As speciesrich assemblages tend to be more functional, we warn about possible reductions in ecosystem functions and the services provided by scavengers in human‐dominated landscapes in the Anthropocene

    Functional biogeography of vertebrate scavengers drives carcass removal across biomes

    Get PDF
    Resumen del trabajo presentado en el XVI Congreso Nacional de la AEET 2023: la ecología en una biosfera humanizada, celebrado en Almería entre el 16 y el 20 de octubre de 2023.Vertebrate scavengers play a crucial role in food web stability and cycling of organic matter and nutrients. However, the global factors that influence their functional biogeography and impact on ecosystem functioning at regional and local levels remain poorly understood. We aim to address this challenge by analyzing a global dataset covering 49 regions in all inhabited continents, including information on 1,847 locally monitored carcasses and 204 vertebrate scavenger species along with their functional traits. We investigate the importance of biogeographical (spatial), environmental and anthropogenic factors in structuring vertebrate scavengers¿ functional trait composition, diversity and abundance. Additionally, we investigate how these biodiversity attributes affect carcass removal at regional and local scales. Our results show that the functional trait composition of assemblages across studied regions was primarily explained by latitude and lon¬gitude, suggesting a strong biogeographical signature. In addition, while functional richness remained unexplained, scavenger abundance responded to both environmental and spatial factors. Further, we found that carcass removal was mainly driven by functional composition, but with the relative importance of particular functional traits varying from local to regional scales. At the local scale, carcass removal was positively related to large carnivorous species with large home ranges, while at the regional scale, carcass removal was better explained by the presence of vultures, other raptors and diurnal birds. Our study provides a better understanding of the factors controlling the func¬tional biogeography of terrestrial vertebrates and their role in maintaining essential ecological functions and services.Peer reviewe

    Sensory Communication

    Get PDF
    Contains table of contents for Section 2, an introduction and reports on twelve research projects.National Institutes of Health Grant 5 R01 DC00117National Institutes of Health Contract 2 P01 DC00361National Institutes of Health Grant 5 R01 DC00126National Institutes of Health Grant R01-DC00270U.S. Air Force - Office of Scientific Research Contract AFOSR-90-0200National Institutes of Health Grant R29-DC00625U.S. Navy - Office of Naval Research Grant N00014-88-K-0604U.S. Navy - Office of Naval Research Grant N00014-91-J-1454U.S. Navy - Office of Naval Research Grant N00014-92-J-1814U.S. Navy - Naval Training Systems Center Contract N61339-93-M-1213U.S. Navy - Naval Training Systems Center Contract N61339-93-C-0055U.S. Navy - Naval Training Systems Center Contract N61339-93-C-0083U.S. Navy - Office of Naval Research Grant N00014-92-J-4005U.S. Navy - Office of Naval Research Grant N00014-93-1-119

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Effects of Anacetrapib in Patients with Atherosclerotic Vascular Disease

    Get PDF
    BACKGROUND: Patients with atherosclerotic vascular disease remain at high risk for cardiovascular events despite effective statin-based treatment of low-density lipoprotein (LDL) cholesterol levels. The inhibition of cholesteryl ester transfer protein (CETP) by anacetrapib reduces LDL cholesterol levels and increases high-density lipoprotein (HDL) cholesterol levels. However, trials of other CETP inhibitors have shown neutral or adverse effects on cardiovascular outcomes. METHODS: We conducted a randomized, double-blind, placebo-controlled trial involving 30,449 adults with atherosclerotic vascular disease who were receiving intensive atorvastatin therapy and who had a mean LDL cholesterol level of 61 mg per deciliter (1.58 mmol per liter), a mean non-HDL cholesterol level of 92 mg per deciliter (2.38 mmol per liter), and a mean HDL cholesterol level of 40 mg per deciliter (1.03 mmol per liter). The patients were assigned to receive either 100 mg of anacetrapib once daily (15,225 patients) or matching placebo (15,224 patients). The primary outcome was the first major coronary event, a composite of coronary death, myocardial infarction, or coronary revascularization. RESULTS: During the median follow-up period of 4.1 years, the primary outcome occurred in significantly fewer patients in the anacetrapib group than in the placebo group (1640 of 15,225 patients [10.8%] vs. 1803 of 15,224 patients [11.8%]; rate ratio, 0.91; 95% confidence interval, 0.85 to 0.97; P=0.004). The relative difference in risk was similar across multiple prespecified subgroups. At the trial midpoint, the mean level of HDL cholesterol was higher by 43 mg per deciliter (1.12 mmol per liter) in the anacetrapib group than in the placebo group (a relative difference of 104%), and the mean level of non-HDL cholesterol was lower by 17 mg per deciliter (0.44 mmol per liter), a relative difference of -18%. There were no significant between-group differences in the risk of death, cancer, or other serious adverse events. CONCLUSIONS: Among patients with atherosclerotic vascular disease who were receiving intensive statin therapy, the use of anacetrapib resulted in a lower incidence of major coronary events than the use of placebo. (Funded by Merck and others; Current Controlled Trials number, ISRCTN48678192 ; ClinicalTrials.gov number, NCT01252953 ; and EudraCT number, 2010-023467-18 .)

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries
    corecore