64 research outputs found

    Discrimination of bladder cancer cells from normal urothelial cells with high specificity and sensitivity:combined application of atomic force microscopy and modulated Raman spectroscopy

    Get PDF
    Atomic force microscopy (AFM) and modulated Raman spectroscopy (MRS) were used to discriminate between living normal human urothelial cells (SV-HUC-1) and bladder tumour cells (MGH-U1) with high specificity and sensitivity. MGH-U1 cells were 1.5-fold smaller, 1.7-fold thicker and 1.4-fold rougher than normal SV-HUC-1 cells. The adhesion energy was 2.6-fold higher in the MGH-U1 cells compared to normal SV-HUC-1 cells, which possibly indicates that bladder tumour cells are more deformable than normal cells. The elastic modulus of MGH-U1 cells was 12-fold lower than SV-HUC-1 cells, suggesting a higher elasticity of the bladder cancer cell membranes. The biochemical fingerprints of cancer cells displayed a higher DNA and lipid content, probably due to an increase in the nuclear to cytoplasm ratio. Normal cells were characterized by higher protein contents. AFM studies revealed a decrease in the lateral dimensions and an increase in thickness of cancer cells compared to normal cells; these studies authenticate the observations from MRS. Nanostructural, nanomechanical and biochemical profiles of bladder cells provide qualitative and quantitative markers to differentiate between normal and cancerous cells at the single cellular level. AFM and MRS allow discrimination between adhesion energy, elasticity and Raman spectra of SV-HUC-1 and MGH-U1 cells with high specificity (83, 98 and 95%) and sensitivity (97, 93 and 98%). Such single-cell-level studies could have a pivotal impact on the development of AFM–Raman combined methodologies for cancer profiling and screening with translational significance

    Is Amyloid Binding Alcohol Dehydrogenase a Drug Target for Treating Alzheimer's Disease?

    Get PDF
    Current strategies for the treatment of Alzheimer's disease (AD) involve tackling the formation or clearance of the amyloid-beta peptide (Aβ) and/or hyper-phosphorylated tau, or the support and stabilization of the remaining neuronal networks. However, as we gain a clearer idea of the large number of molecular mechanisms at work in this disease, it is becoming clearer that the treatment of AD should take a combined approach of dealing with several aspects of the pathology. The concept that we also need to protect specific sensitive targets within the cell should also be considered. In particular the role of protecting the function of a specific mitochondrial protein, amyloid binding alcohol dehydrogenase (ABAD), will be the focus of this review. Mitochondrial dysfunction is a well-recognized fact in the progression of AD, though until recently the mechanisms involved could only be loosely labeled as changes in `metabolism'. The discovery that Aβ can be present within the mitochondria and specifically bind to ABAD, has opened up a new area of AD research. Here we review the evidence that the prevention of Aβ binding to ABAD is a drug target for the treatment of AD

    The Calcium-Binding Protein EFhd2 Modulates Synapse Formation In Vitro and Is Linked to Human Dementia

    Get PDF
    This work was funded by a research grant from Alzheimer’s Research UK (Eva Borger, Tara Spires-Jones, Frank Gunn-Moore) and the 600th University of St. Andrews anniversary BRAINS appeal.EFhd2 is a calcium-binding adaptor protein that has been found to be associated with pathologically aggregated tau in the brain in Alzheimer disease and in a mouse model of frontotemporal dementia. EFhd2 has cell type–specific functions, including the modulation of intracellular calcium responses, actin dynamics, and microtubule transport. Here we report that EFhd2 protein and mRNA levels are reduced in human frontal cortex tissue affected by different types of dementia with and without tau pathology. We show that EFhd2 is mainly a neuronal protein in the brain and is abundant in the forebrain. Using short hairpin RNA–mediated knockdown of EFhd2 expression in cultured cortical neurons, we demonstrate that loss of EFhd2 affects the number of synapses developed in vitro whereas it does not alter neurite outgrowth per se. Our data suggest that EFhd2 is involved in the control of synapse development and maintenance through means other than affecting neurite development. The changes in expression levels observed in human dementias might, therefore, play a significant role in disease onset and progression of dementia, which is characterized by the loss of synapses.Publisher PDFPublisher PDFPeer reviewe

    2023 ESC Guidelines for the management of cardiovascular disease in patients with diabetes

    Get PDF

    Activation of a synapse weakening pathway by human Val66 but not Met66 pro-brain-derived neurotrophic factor (proBDNF)

    Get PDF
    This work has been supported by Bristol Research into Alzheimer’s and Care of the Elderly (BRACE), the Sigmund Gestetner Trust Fund (University of Bristol), the Alzheimer’s Society and the Alumni of the University of Bristol. K.C. and D.J.W. were supported by UK Wellcome Trust-MRC Neurodegenerative Disease Initiative Programme. J.H.Y. was supported by the Korea-UK Alzheimer’s Research Consortium Programme under the Korean Ministry of Health and Welfare. T.M.P. and S.C. were supported by Bristol-Chonnam Frontier Programme under the Chonnam National University Hospital. K.C. was supported by the Wolfson Research Merit Award and Royal Society, London.This study describes a fundamental functional difference between the two main polymorphisms of the pro-form of brain-derived neurotrophic factor (proBDNF), providing an explanation as to why these forms have such different age-related neurological outcomes. Healthy young carriers of the Met66 form (present in ∼30% Caucasians) have reduced hippocampal volume and impaired hippocampal-dependent memory function, yet the same polymorphic population shows enhanced cognitive recovery after traumatic brain injury, delayed cognitive dysfunction during aging, and lower risk of late-onset Alzheimer’s disease (AD) compared to those with the more common Val66 polymorphism. To examine the differences between the protein polymorphisms in structure, kinetics of binding to proBDNF receptors and in vitro function, we generated purified cleavage-resistant human variants. Intriguingly, we found no statistical differences in those characteristics. As anticipated, exogenous application of proBDNF Val66 to rat hippocampal slices dysregulated synaptic plasticity, inhibiting long-term potentiation (LTP) and facilitating long-term depression (LTD). We subsequently observed that this occurred via the glycogen synthase kinase 3β (GSK3β) activation pathway. However, surprisingly, we found that Met66 had no such effects on either LTP or LTD. These novel findings suggest that, unlike Val66, the Met66 variant does not facilitate synapse weakening signaling, perhaps accounting for its protective effects with aging.Publisher PDFPeer reviewe

    Applying extracellular vesicles based therapeutics in clinical trials - an ISEV position paper

    Get PDF
    Extracellular vesicles (EVs), such as exosomes and microvesicles, are released by different cell types and participate in physiological and pathophysiological processes. EVs mediate intercellular communication as cell-derived extracellular signalling organelles that transmit specific information from their cell of origin to their target cells. As a result of these properties, EVs of defined cell types may serve as novel tools for various therapeutic approaches, including (a) anti-tumour therapy, (b) pathogen vaccination, (c) immune-modulatory and regenerative therapies and (d) drug delivery. The translation of EVs into clinical therapies requires the categorization of EV-based therapeutics in compliance with existing regulatory frameworks. As the classification defines subsequent requirements for manufacturing, quality control and clinical investigation, it is of major importance to define whether EVs are considered the active drug components or primarily serve as drug delivery vehicles. For an effective and particularly safe translation of EV-based therapies into clinical practice, a high level of cooperation between researchers, clinicians and competent authorities is essential. In this position statement, basic and clinical scientists, as members of the International Society for Extracellular Vesicles (ISEV) and of the European Cooperation in Science and Technology (COST) program of the European Union, namely European Network on Microvesicles and Exosomes in Health and Disease (ME-HaD), summarize recent developments and the current knowledge of EV-based therapies. Aspects of safety and regulatory requirements that must be considered for pharmaceutical manufacturing and clinical application are highlighted. Production and quality control processes are discussed. Strategies to promote the therapeutic application of EVs in future clinical studies are addresse

    New intracellular mechanisms involved in Alzheimer's disease and frontotemporal dementia

    Get PDF
    Electronic version excludes material for which permission has not been granted by the rights holderDementia causes an increasing social and economic burden worldwide, demanding action regarding its diagnosis, treatment and everyday management. Recent years have seen many advances in neurodegeneration research, but the search for new truly disease modifying therapies for Alzheimer's disease (AD) and frontotemporal dementia (FTD) has so far not been successful. This is mainly due to a lack of understanding of the precise intracellular events that lead up to neuronal dysfunction in early and in late stages of the disease. This thesis describes the approaches taken to extend the current knowledge about the intracellular effects of neuronal amyloid-beta and the signalling pathways causing neuronal death or disturbed synaptic function in dementia. Endophilin-1(Ep-1), amyloid-binding alcohol dehydrogenase (ABAD), peroxiredoxin-2 (Prx-2) and the EF-hand domain family, member D2 (EFHD2) have been found to be elevated in the human brain with dementia and in mouse models for frontotemporal lobar degeneration (FTLD) or AD. The expression of these proteins as well as the expression of c-Jun N-terminal kinase (JNK), c-Jun and APP were analysed by western blotting and real-time PCR in human brains affected by AD or FTLD as well as in mouse models for AD. This provided a new insight into the regulation of these proteins in relation to each other in the ageing brain and uncovered a new potential link between elevated levels of EFHD2, Prx-2 and APP in FTLD. By studying the effects of the overexpression of Ep-1 in neurons, this research has led to a better understanding of its role in JNK-activation. It furthermore verified a protective role for Prx-2 against neurotoxicity and pointed towards a new function for Prx-2 in the regulation of JNK-signalling. The analysis of the effect of increased levels of EFHD2 uncovered for the first time its involvement in the PI3K-signalling cascade in neuronal cells. The current work has therefore contributed to the knowledge about the cellular processes that are affected by Ep-1, Prx-2 and EFHD2 in different types of dementia and will greatly benefit future research into their actions in the neuronal network

    The adoption of ORCID iDs in research workflows at the University of St Andrews

    No full text
    Higher-level report describing results of a survey on the adoption of ORCID iDs by researchers at the University of St Andrews
    corecore