68 research outputs found

    Recognize and Accept Me: Consequences of the Drive for Social Identity Validation

    Get PDF
    According to uncertainty-identity theory (Hogg, 2021a) one of the benefits of group identification is uncertainty-reduction. To reap this benefit fully, it is posited that people also are motivated to have their identities validated, especially if the identity is one that is important to a person’s sense of self. However, people receive various feedback about their identities, and feedback about one’s identity does not come solely from one’s ingroup. While past research has demonstrated that feedback and source of feedback are important factors in social identity validation processes (see Choi & Hogg, 2020b), the current research proposes that uncertainty also may be a key factor in these processes; specifically, those with greater self-uncertainty will have a greater desire for identity validation for identities that are central to their sense of self. Furthermore, such desires can have consequences for how individuals evaluate and interact with their ingroup as well as their outgroup. Three studies were conducted to examine this. Study 1 (N = 139) showed that those with greater self-uncertainty and those whose identity is more central to their sense of self have a greater desire for identity validation. Study 2 (N = 142) showed that there is less ingroup bias when individuals evaluate feedback sources after imagining receiving identity validation from an outgroup source, and self-uncertainty moderates the effect of the feedback source’s group when evaluating the ingroup and outgroup as a whole. Study 3 (N = 142) showed that those who receive ingroup invalidation have a greater desire for identity validation from the outgroup compared to those who receive ingroup validation. Implications for intra- and intergroup dynamics and future research are discusse

    Learning Bayesian networks with ancestral constraints

    Get PDF
    Abstract We consider the problem of learning Bayesian networks optimally, when subject to background knowledge in the form of ancestral constraints. Our approach is based on a recently proposed framework for optimal structure learning based on non-decomposable scores, which is general enough to accommodate ancestral constraints. The proposed framework exploits oracles for learning structures using decomposable scores, which cannot accommodate ancestral constraints since they are non-decomposable. We show how to empower these oracles by passing them decomposable constraints that they can handle, which are inferred from ancestral constraints that they cannot handle. Empirically, we demonstrate that our approach can be orders-of-magnitude more efficient than alternative frameworks, such as those based on integer linear programming

    Automated deep learning segmentation of high-resolution 7 T postmortem MRI for quantitative analysis of structure-pathology correlations in neurodegenerative diseases

    Full text link
    Postmortem MRI allows brain anatomy to be examined at high resolution and to link pathology measures with morphometric measurements. However, automated segmentation methods for brain mapping in postmortem MRI are not well developed, primarily due to limited availability of labeled datasets, and heterogeneity in scanner hardware and acquisition protocols. In this work, we present a high resolution of 135 postmortem human brain tissue specimens imaged at 0.3 mm3^{3} isotropic using a T2w sequence on a 7T whole-body MRI scanner. We developed a deep learning pipeline to segment the cortical mantle by benchmarking the performance of nine deep neural architectures, followed by post-hoc topological correction. We then segment four subcortical structures (caudate, putamen, globus pallidus, and thalamus), white matter hyperintensities, and the normal appearing white matter. We show generalizing capabilities across whole brain hemispheres in different specimens, and also on unseen images acquired at 0.28 mm^3 and 0.16 mm^3 isotropic T2*w FLASH sequence at 7T. We then compute localized cortical thickness and volumetric measurements across key regions, and link them with semi-quantitative neuropathological ratings. Our code, Jupyter notebooks, and the containerized executables are publicly available at: https://pulkit-khandelwal.github.io/exvivo-brain-upennComment: Preprint submitted to NeuroImage Project website: https://pulkit-khandelwal.github.io/exvivo-brain-upen

    Surgical site infection after gastrointestinal surgery in high-income, middle-income, and low-income countries: a prospective, international, multicentre cohort study

    Get PDF
    Background: Surgical site infection (SSI) is one of the most common infections associated with health care, but its importance as a global health priority is not fully understood. We quantified the burden of SSI after gastrointestinal surgery in countries in all parts of the world. Methods: This international, prospective, multicentre cohort study included consecutive patients undergoing elective or emergency gastrointestinal resection within 2-week time periods at any health-care facility in any country. Countries with participating centres were stratified into high-income, middle-income, and low-income groups according to the UN's Human Development Index (HDI). Data variables from the GlobalSurg 1 study and other studies that have been found to affect the likelihood of SSI were entered into risk adjustment models. The primary outcome measure was the 30-day SSI incidence (defined by US Centers for Disease Control and Prevention criteria for superficial and deep incisional SSI). Relationships with explanatory variables were examined using Bayesian multilevel logistic regression models. This trial is registered with ClinicalTrials.gov, number NCT02662231. Findings: Between Jan 4, 2016, and July 31, 2016, 13 265 records were submitted for analysis. 12 539 patients from 343 hospitals in 66 countries were included. 7339 (58·5%) patient were from high-HDI countries (193 hospitals in 30 countries), 3918 (31·2%) patients were from middle-HDI countries (82 hospitals in 18 countries), and 1282 (10·2%) patients were from low-HDI countries (68 hospitals in 18 countries). In total, 1538 (12·3%) patients had SSI within 30 days of surgery. The incidence of SSI varied between countries with high (691 [9·4%] of 7339 patients), middle (549 [14·0%] of 3918 patients), and low (298 [23·2%] of 1282) HDI (p < 0·001). The highest SSI incidence in each HDI group was after dirty surgery (102 [17·8%] of 574 patients in high-HDI countries; 74 [31·4%] of 236 patients in middle-HDI countries; 72 [39·8%] of 181 patients in low-HDI countries). Following risk factor adjustment, patients in low-HDI countries were at greatest risk of SSI (adjusted odds ratio 1·60, 95% credible interval 1·05–2·37; p=0·030). 132 (21·6%) of 610 patients with an SSI and a microbiology culture result had an infection that was resistant to the prophylactic antibiotic used. Resistant infections were detected in 49 (16·6%) of 295 patients in high-HDI countries, in 37 (19·8%) of 187 patients in middle-HDI countries, and in 46 (35·9%) of 128 patients in low-HDI countries (p < 0·001). Interpretation: Countries with a low HDI carry a disproportionately greater burden of SSI than countries with a middle or high HDI and might have higher rates of antibiotic resistance. In view of WHO recommendations on SSI prevention that highlight the absence of high-quality interventional research, urgent, pragmatic, randomised trials based in LMICs are needed to assess measures aiming to reduce this preventable complication

    Global incidence, prevalence, years lived with disability (YLDs), disability-adjusted life-years (DALYs), and healthy life expectancy (HALE) for 371 diseases and injuries in 204 countries and territories and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Detailed, comprehensive, and timely reporting on population health by underlying causes of disability and premature death is crucial to understanding and responding to complex patterns of disease and injury burden over time and across age groups, sexes, and locations. The availability of disease burden estimates can promote evidence-based interventions that enable public health researchers, policy makers, and other professionals to implement strategies that can mitigate diseases. It can also facilitate more rigorous monitoring of progress towards national and international health targets, such as the Sustainable Development Goals. For three decades, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) has filled that need. A global network of collaborators contributed to the production of GBD 2021 by providing, reviewing, and analysing all available data. GBD estimates are updated routinely with additional data and refined analytical methods. GBD 2021 presents, for the first time, estimates of health loss due to the COVID-19 pandemic. Methods: The GBD 2021 disease and injury burden analysis estimated years lived with disability (YLDs), years of life lost (YLLs), disability-adjusted life-years (DALYs), and healthy life expectancy (HALE) for 371 diseases and injuries using 100 983 data sources. Data were extracted from vital registration systems, verbal autopsies, censuses, household surveys, disease-specific registries, health service contact data, and other sources. YLDs were calculated by multiplying cause-age-sex-location-year-specific prevalence of sequelae by their respective disability weights, for each disease and injury. YLLs were calculated by multiplying cause-age-sex-location-year-specific deaths by the standard life expectancy at the age that death occurred. DALYs were calculated by summing YLDs and YLLs. HALE estimates were produced using YLDs per capita and age-specific mortality rates by location, age, sex, year, and cause. 95% uncertainty intervals (UIs) were generated for all final estimates as the 2·5th and 97·5th percentiles values of 500 draws. Uncertainty was propagated at each step of the estimation process. Counts and age-standardised rates were calculated globally, for seven super-regions, 21 regions, 204 countries and territories (including 21 countries with subnational locations), and 811 subnational locations, from 1990 to 2021. Here we report data for 2010 to 2021 to highlight trends in disease burden over the past decade and through the first 2 years of the COVID-19 pandemic. Findings: Global DALYs increased from 2·63 billion (95% UI 2·44–2·85) in 2010 to 2·88 billion (2·64–3·15) in 2021 for all causes combined. Much of this increase in the number of DALYs was due to population growth and ageing, as indicated by a decrease in global age-standardised all-cause DALY rates of 14·2% (95% UI 10·7–17·3) between 2010 and 2019. Notably, however, this decrease in rates reversed during the first 2 years of the COVID-19 pandemic, with increases in global age-standardised all-cause DALY rates since 2019 of 4·1% (1·8–6·3) in 2020 and 7·2% (4·7–10·0) in 2021. In 2021, COVID-19 was the leading cause of DALYs globally (212·0 million [198·0–234·5] DALYs), followed by ischaemic heart disease (188·3 million [176·7–198·3]), neonatal disorders (186·3 million [162·3–214·9]), and stroke (160·4 million [148·0–171·7]). However, notable health gains were seen among other leading communicable, maternal, neonatal, and nutritional (CMNN) diseases. Globally between 2010 and 2021, the age-standardised DALY rates for HIV/AIDS decreased by 47·8% (43·3–51·7) and for diarrhoeal diseases decreased by 47·0% (39·9–52·9). Non-communicable diseases contributed 1·73 billion (95% UI 1·54–1·94) DALYs in 2021, with a decrease in age-standardised DALY rates since 2010 of 6·4% (95% UI 3·5–9·5). Between 2010 and 2021, among the 25 leading Level 3 causes, age-standardised DALY rates increased most substantially for anxiety disorders (16·7% [14·0–19·8]), depressive disorders (16·4% [11·9–21·3]), and diabetes (14·0% [10·0–17·4]). Age-standardised DALY rates due to injuries decreased globally by 24·0% (20·7–27·2) between 2010 and 2021, although improvements were not uniform across locations, ages, and sexes. Globally, HALE at birth improved slightly, from 61·3 years (58·6–63·6) in 2010 to 62·2 years (59·4–64·7) in 2021. However, despite this overall increase, HALE decreased by 2·2% (1·6–2·9) between 2019 and 2021. Interpretation: Putting the COVID-19 pandemic in the context of a mutually exclusive and collectively exhaustive list of causes of health loss is crucial to understanding its impact and ensuring that health funding and policy address needs at both local and global levels through cost-effective and evidence-based interventions. A global epidemiological transition remains underway. Our findings suggest that prioritising non-communicable disease prevention and treatment policies, as well as strengthening health systems, continues to be crucially important. The progress on reducing the burden of CMNN diseases must not stall; although global trends are improving, the burden of CMNN diseases remains unacceptably high. Evidence-based interventions will help save the lives of young children and mothers and improve the overall health and economic conditions of societies across the world. Governments and multilateral organisations should prioritise pandemic preparedness planning alongside efforts to reduce the burden of diseases and injuries that will strain resources in the coming decades. Funding: Bill &amp; Melinda Gates Foundation

    Algorithmic Implementation of Visually Guided Interceptive Actions: Harmonic Ratios and Stimulation Invariants

    No full text
    This research presents a novel algorithmic implementation to improve the analysis of visually controlled interception and accompanying motor action through the computational application of harmonic ratios and stimulation invariants. Unlike traditional models that focus mainly on psychological aspects, our approach integrates the relevant constructs into a practical mathematical framework. This allows for dynamic prediction of interception points with improved accuracy and real-time perception–action capabilities, essential for applications in neurorehabilitation and virtual reality. Our methodology uses stimulation invariants as key parameters within a mathematical model to quantitatively predict and improve interception outcomes. The results demonstrate the superior performance of our algorithms over conventional methods, confirming their potential for advancing robotic vision systems and adaptive virtual environments. By translating complex theories of visual perception into algorithmic solutions, this study provides innovative ways to improve motion perception and interactive systems. This study aims to articulate the complex interplay of geometry, perception, and technology in understanding and utilizing cross ratios at infinity, emphasizing their practical applications in virtual and augmented reality settings

    Disposition of Aerosols of Isothiazolinone-Biocides: BIT, MIT and OIT

    No full text
    Biocides are widely used in everyday life, and accordingly, human exposure to them is inevitable. Especially, the inhalational exposure of humans to biocides and resultant respiratory toxicity are gaining public interest due to the recent catastrophe associated with humidifier disinfectants. Aerosolized chemicals are subject to gravitational deposition and chemical degradation. Therefore, the characterization of the disposition of aerosols is essential to estimate the inhalational exposure to biocides. Here, we compared the disposition of aerosols of one of the commonly used biocide classes, isothiazolinone-based biocides, BIT, MIT, and OIT. An acrylic chamber (40 cm × 40 cm × 50 cm) was created to simulate the indoor environment, and a vacuum pump was used to create airflow (1 LPM). Biocides were sprayed from a vertical nebulizer placed on the ceiling of the chamber, and the distribution of particle sizes and volume was measured using the Optical Particle Sizer (OPS) 3330 device. During and after the aerosol spraying, airborne biocides and those deposited on the surface of the chamber were sampled to measure the deposition using LC-MS/MS. As a result, the broad particle size distribution was observed ranging from 0.3 to 8 μm during the nebulization. The inhalable particle faction (>2 μm) of the isothiazolinones was 32–67.9% in number but 1.2 to 6.4% in volume. Most of the aerosolized biocides were deposited on the chamber’s surface while only a minimal portion was airborne (<1%) after the nebulization. More importantly, significant amounts of MIT and OIT were degraded during aerosolization, resulting in poor total recovery compared to BIT (31%, 71% vs. 97% BIT). This result suggests that some isothiazolinones may become unstable during nebulization, affecting their disposition and human exposure significantly

    Conceptualization, development, and early dissemination of eMPACTTM: A competency-based career navigation system for translational research professionals

    No full text
    Abstract Introduction: Purposeful training and ongoing career support are necessary to meet the evolving and expanding roles of clinical research professionals (CRP). To address the training and employment needs of clinical research coordinators (CRCs), one of the largest sectors of the CRP workforce, we designed, developed, and implemented an online career navigation system, eMPACTTM (eMpowering Purposeful Advancement of Careers and Training). Methods: A design-based research method was employed as an overarching approach that frames iterative design, development, and implementation of educational interventions. The five major phases of this project – conceptualization, task analysis for measurement development, algorithms development, algorithms validation, and system evaluation – presented specific goals and relevant methods. Results: The results reported how the eMPACTTM system was conceptualized, developed, and validated. The system allowed CRCs to navigate tailored training and job opportunities by completing their task competencies and career goals. The data sets could, in turn, support employees’ and training coordinators’ informed decisions about organizational training needs and recruitment. The early dissemination results showed steady growth in registered CRCs and diversity in users’ ethnicity and job levels. Conclusions: The eMPACTTM service showed the possibility of supporting CRCs’ individual career advancement and organizational workforce enhancement and diversity. Long-term research is needed to evaluate its impact on CRC workforce development, explore key factors influencing workforce sustainability, and expand eMPACTTM service to other CRP sectors
    corecore