104 research outputs found

    The where, what, and when of membrane protein degradation in neurons

    Get PDF
    Membrane protein turnover and degradation are required for the function and health of all cells. Neurons may live for the entire lifetime of an organism and are highly polarized cells with spatially segregated axonal and dendritic compartments. Both longevity and morphological complexity represent challenges for regulated membrane protein degradation. To investigate how neurons cope with these challenges, an increasing number of recent studies investigated local, cargo-specific protein sorting, and degradation at axon terminals and in dendritic processes. In this review, we explore the current answers to the ensuing questions of where, what, and when membrane proteins are degraded in neurons

    Systematic functional analysis of rab GTPases reveals limits of neuronal robustness to environmental challenges in flies

    Get PDF
    Rab GTPases are molecular switches that regulate membrane trafficking in all cells. Neurons have particular demands on membrane trafficking and express numerous Rab GTPases of unknown function. Here, we report the generation and characterization of molecularly defined null mutants for all 26 rab genes in Drosophila. In flies, all rab genes are expressed in the nervous system where at least half exhibit particularly high levels compared to other tissues. Surprisingly, loss of any of these 13 nervous system-enriched Rabs yielded viable and fertile flies without obvious morphological defects. However, all 13 mutants differentially affected development when challenged with different temperatures, or neuronal function when challenged with continuous stimulation. We identified a synaptic maintenance defect following continuous stimulation for six mutants, including an autophagy-independent role of rab26. The complete mutant collection generated in this study provides a basis for further comprehensive studies of Rab GTPases during development and function in vivo

    Genome maps across 26 human populations reveal population-specific patterns of structural variation.

    Get PDF
    Large structural variants (SVs) in the human genome are difficult to detect and study by conventional sequencing technologies. With long-range genome analysis platforms, such as optical mapping, one can identify large SVs (>2 kb) across the genome in one experiment. Analyzing optical genome maps of 154 individuals from the 26 populations sequenced in the 1000 Genomes Project, we find that phylogenetic population patterns of large SVs are similar to those of single nucleotide variations in 86% of the human genome, while ~2% of the genome has high structural complexity. We are able to characterize SVs in many intractable regions of the genome, including segmental duplications and subtelomeric, pericentromeric, and acrocentric areas. In addition, we discover ~60 Mb of non-redundant genome content missing in the reference genome sequence assembly. Our results highlight the need for a comprehensive set of alternate haplotypes from different populations to represent SV patterns in the genome

    Long-term IL-33-producing epithelial progenitor cells in chronic obstructive lung disease

    Get PDF
    Chronic obstructive lung disease is characterized by persistent abnormalities in epithelial and immune cell function that are driven, at least in part, by infection. Analysis of parainfluenza virus infection in mice revealed an unexpected role for innate immune cells in IL-13–dependent chronic lung disease, but the upstream driver for the immune axis in this model and in humans with similar disease was undefined. We demonstrate here that lung levels of IL-33 are selectively increased in postviral mice with chronic obstructive lung disease and in humans with very severe chronic obstructive pulmonary disease (COPD). In the mouse model, IL-33/IL-33 receptor signaling was required for Il13 and mucin gene expression, and Il33 gene expression was localized to a virus-induced subset of airway serous cells and a constitutive subset of alveolar type 2 cells that are both linked conventionally to progenitor function. In humans with COPD, IL33 gene expression was also associated with IL13 and mucin gene expression, and IL33 induction was traceable to a subset of airway basal cells with increased capacities for pluripotency and ATP-regulated release of IL-33. Together, these findings provide a paradigm for the role of the innate immune system in chronic disease based on the influence of long-term epithelial progenitor cells programmed for excess IL-33 production

    The Earth BioGenome Project 2020: Starting the clock.

    Get PDF

    The Earth BioGenome Project 2020: Starting the clock.

    Get PDF
    © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Lewin, H. A., Richards, S., Lieberman Aiden, E., Allende, M. L., Archibald, J. M., Bálint, M., Barker, K. B., Baumgartner, B., Belov, K., Bertorelle, G., Blaxter, Mark L., Cai, J., Caperello, N. D., Carlson, K., Castilla-Rubio, J. C., Chaw, S-M., Chen, L., Childers, A. K., Coddington, J. A., Conde, D. A., Corominas, M., Crandall, K. A., Crawford, A. J., DiPalma, F., Durbin, R., Ebenezer, T. E., Edwards, S. V., Fedrigo, O., Flicek, P., Formenti, G., Gibbs, R. A., Gilbert, M. Thomas P., Goldstein, M. M., Graves, J. M., Greely, H. T., Grigoriev, I. V., Hackett, K. J., Hall, N., Haussler, D., Helgen, K. M., Hogg, C. J., Isobe, S., Jakobsen, K. S., Janke, A., Jarvis, E. D., Johnson, W. E., Jones, S. J. M., Karlsson, E. K., Kersey, P. J., Kim, J-H., Kress, W. J., Kuraku, S., Lawniczak, M. K. N., Leebens-Mack, J. H., Li, X., Lindblad-Toh, K., Liu, X., Lopez, J. V., Marques-Bonet, T., Mazard, S., Mazet, J. A. K., Mazzoni, C. J., Myers, E. W., O’Neill, R. J., Paez, S., Park, H., Robinson, G. E., Roquet, C., Ryder, O. A., Sabir, J. S. M., Shaffer, H. B., Shank, T. M., Sherkow, J. S., Soltis, P. S., Tang, B., Tedersoo, L., Uliano-Silva, M., Wang, K., Wei, X., Wetzer, R., Wilson, J. L., Xu, X., Yang, H., Yoder, A. D., Zhang, G. The Earth BioGenome Project 2020: starting the clock. Proceedings of the National Academy of Sciences of the United States of America, 119(4), (2022): e2115635118, https://doi.org/10.1073/pnas.2115635118.November 2020 marked 2 y since the launch of the Earth BioGenome Project (EBP), which aims to sequence all known eukaryotic species in a 10-y timeframe. Since then, significant progress has been made across all aspects of the EBP roadmap, as outlined in the 2018 article describing the project’s goals, strategies, and challenges (1). The launch phase has ended and the clock has started on reaching the EBP’s major milestones. This Special Feature explores the many facets of the EBP, including a review of progress, a description of major scientific goals, exemplar projects, ethical legal and social issues, and applications of biodiversity genomics. In this Introduction, we summarize the current status of the EBP, held virtually October 5 to 9, 2020, including recent updates through February 2021. References to the nine Perspective articles included in this Special Feature are cited to guide the reader toward deeper understanding of the goals and challenges facing the EBP

    The Earth BioGenome Project 2020: Starting the clock.

    Get PDF

    Integrated genomic characterization of oesophageal carcinoma

    Get PDF
    Oesophageal cancers are prominent worldwide; however, there are few targeted therapies and survival rates for these cancers remain dismal. Here we performed a comprehensive molecular analysis of 164 carcinomas of the oesophagus derived from Western and Eastern populations. Beyond known histopathological and epidemiologic distinctions, molecular features differentiated oesophageal squamous cell carcinomas from oesophageal adenocarcinomas. Oesophageal squamous cell carcinomas resembled squamous carcinomas of other organs more than they did oesophageal adenocarcinomas. Our analyses identified three molecular subclasses of oesophageal squamous cell carcinomas, but none showed evidence for an aetiological role of human papillomavirus. Squamous cell carcinomas showed frequent genomic amplifications of CCND1 and SOX2 and/or TP63, whereas ERBB2, VEGFA and GATA4 and GATA6 were more commonly amplified in adenocarcinomas. Oesophageal adenocarcinomas strongly resembled the chromosomally unstable variant of gastric adenocarcinoma, suggesting that these cancers could be considered a single disease entity. However, some molecular features, including DNA hypermethylation, occurred disproportionally in oesophageal adenocarcinomas. These data provide a framework to facilitate more rational categorization of these tumours and a foundation for new therapies

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
    corecore