11 research outputs found

    An Integration of Genome-Wide Association Study and Gene Expression Profiling to Prioritize the Discovery of Novel Susceptibility Loci for Osteoporosis-Related Traits

    Get PDF
    Osteoporosis is a complex disorder and commonly leads to fractures in elderly persons. Genome-wide association studies (GWAS) have become an unbiased approach to identify variations in the genome that potentially affect health. However, the genetic variants identified so far only explain a small proportion of the heritability for complex traits. Due to the modest genetic effect size and inadequate power, true association signals may not be revealed based on a stringent genome-wide significance threshold. Here, we take advantage of SNP and transcript arrays and integrate GWAS and expression signature profiling relevant to the skeletal system in cellular and animal models to prioritize the discovery of novel candidate genes for osteoporosis-related traits, including bone mineral density (BMD) at the lumbar spine (LS) and femoral neck (FN), as well as geometric indices of the hip (femoral neck-shaft angle, NSA; femoral neck length, NL; and narrow-neck width, NW). A two-stage meta-analysis of GWAS from 7,633 Caucasian women and 3,657 men, revealed three novel loci associated with osteoporosis-related traits, including chromosome 1p13.2 (RAP1A, p = 3.6×10−8), 2q11.2 (TBC1D8), and 18q11.2 (OSBPL1A), and confirmed a previously reported region near TNFRSF11B/OPG gene. We also prioritized 16 suggestive genome-wide significant candidate genes based on their potential involvement in skeletal metabolism. Among them, 3 candidate genes were associated with BMD in women. Notably, 2 out of these 3 genes (GPR177, p = 2.6×10−13; SOX6, p = 6.4×10−10) associated with BMD in women have been successfully replicated in a large-scale meta-analysis of BMD, but none of the non-prioritized candidates (associated with BMD) did. Our results support the concept of our prioritization strategy. In the absence of direct biological support for identified genes, we highlighted the efficiency of subsequent functional characterization using publicly available expression profiling relevant to the skeletal system in cellular or whole animal models to prioritize candidate genes for further functional validation

    International genome-wide meta-analysis identifies new primary biliary cirrhosis risk loci and targetable pathogenic pathways.

    Get PDF
    Primary biliary cirrhosis (PBC) is a classical autoimmune liver disease for which effective immunomodulatory therapy is lacking. Here we perform meta-analyses of discovery data sets from genome-wide association studies of European subjects (n=2,764 cases and 10,475 controls) followed by validation genotyping in an independent cohort (n=3,716 cases and 4,261 controls). We discover and validate six previously unknown risk loci for PBC (Pcombined<5 × 10(-8)) and used pathway analysis to identify JAK-STAT/IL12/IL27 signalling and cytokine-cytokine pathways, for which relevant therapies exist

    International genome-wide meta-analysis identifies new primary biliary cirrhosis risk loci and targetable pathogenic pathways

    Get PDF

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Transcription Regulator LMO4 interferes with Neuritogenesis in human SH-SY5Y Neuroblastoma Cells

    No full text
    LMO4 is a transcription regulator interacting with proteins involved, among else, in tumorigenesis. Its function in the nervous system, and particularly in the adult nervous system, has however still to be elucidated. We decided to modify its expression in a neuronal model, human SH-SY5Y neuroblastoma cells, by permanent transfection of sense or anti-sense Lmo4 cDNAs. Generated clones overexpressing the Lmo4 transcript in sense orientation tended to aggregate. They showed significantly reduced average number of neurites per cell and average neuritic length per cell. The opposite was observed with clones overexpressing the anti-sense Lmo4 transcript. Furthermore, selected clones were subjected to 72 h long-term treatments with retinoic acid and phorbol ester (TPA), two biochemicals known to stimulate differentiation of non-transfected SH-SY5Y cells and other neuroblastoma cells. Neuritogenesis occurred after retinoic acid stimulation in all cases. The inhibitory effect of sense Lmo4 RNA overexpression on neuritic outgrowth was indeed prevented. The protein kinase C activator TPA could not induce neuritogenesis in SH-SY5Y cells overexpressing sense Lmo4 RNA. Thus, sense Lmo4 RNA overexpression, not Lmo4 endogenous transcription, overrides the stimulatory effect of TPA upon neuritic outgrowth. We also showed that Lmo4-dependent neuritic retraction and outgrowth correspond to altered phosphorylation of cytoskeletal proteins. Overall, Lmo4 RNA overexpression interferes with neuritic outgrowth, whereas anti-sense Lmo4 RNA expression favors neuritogenesis in SH-SY5Y cells. Consequently, changes in Lmo4 RNA expression levels might alter the rate of neuritic outgrowth in the developing and adult nervous system

    The Matricellular Protein Periostin Is Required for Sost Inhibition and the Anabolic Response to Mechanical Loading and Physical Activity*

    No full text
    Periostin (gene Postn) is a secreted extracellular matrix protein involved in cell recruitment and adhesion and plays an important role in odontogenesis. In bone, periostin is preferentially expressed in the periosteum, but its functional significance remains unclear. We investigated Postn−/− mice and their wild type littermates to elucidate the role of periostin in the skeletal response to moderate physical activity and direct axial compression of the tibia. Furthermore, we administered a sclerostin-blocking antibody to these mice in order to demonstrate the influence of sustained Sost expression in their altered bone phenotypes. Cancellous and cortical bone microarchitecture as well as bending strength were altered in Postn−/− compared with Postn+/+ mice. Exercise and axial compression both significantly increased bone mineral density and trabecular and cortical microarchitecture as well as biomechanical properties of the long bones in Postn+/+ mice by increasing the bone formation activity, particularly at the periosteum. These changes correlated with an increase of periostin expression and a consecutive decrease of Sost in the stimulated bones. In contrast, mechanical stimuli had no effect on the skeletal properties of Postn−/− mice, where base-line expression of Sost levels were higher than Postn+/+ and remained unchanged following axial compression. In turn, the concomitant injection of sclerostin-blocking antibody rescued the bone biomechanical response in Postn−/− mice. Taken together, these results indicate that the matricellular periostin protein is required for Sost inhibition and thereby plays an important role in the determination of bone mass and microstructural in response to loading
    corecore