1,643 research outputs found

    Spectral Reflectance as a Covariate for Estimating Pasture Productivity and Composition

    Get PDF
    Pasturelands are inherently variable. It is this variability that makes sampling as well as characterizing an entire pasture difficult. Measurement of plant canopy reflectance with a ground-based radiometer offers an indirect, rapid, and noninvasive characterization of pasture productivity and composition. The objectives of this study were (i) to determine the relationships between easily collected canopy reflectance data and pasture biomass and species composition and (ii) to determine if the use of pasture reflectance data as a covariate improved mapping accuracy of biomass, percentage of grass cover, and percentage of legume cover across three sampling schemes in a central Iowa pasture. Reflectance values for wavebands most highly correlated with biomass, percentage of grass cover, and percentage of legume cover were used as covariates. Cokriging was compared with kriging as a method for estimating these parameters for unsampled sites. The use of canopy reflectance as a covariate improved prediction of grass and legume percentage of cover in all three sampling schemes studied. The prediction of above-ground biomass was not as consistent given that improvement with cokriging was observed with only one of the sampling schemes because of the low amount of spatial continuity of biomass values. An overall improvement in root mean square error (RMSE) for predicting values for unsampled sites was observed when cokriging was implemented. Use of rapid and indirect methods for quantifying pasture variability could provide useful and convenient information for more accurate characterization of time consuming parameters, such as pasture composition

    Homogenisation of carnivorous mammal ensembles caused by global range reductions of large-bodied hypercarnivores during the late Quaternary

    Get PDF
    Carnivorous mammals play crucial roles in ecosystems by influencing prey densities and behaviour, and recycling carrion. Yet, the influence of carnivores on global ecosystems has been affected by extinctions and range contractions throughout the Late Pleistocene and Holocene (~130 000 years ago to the current). Large-bodied mammals were particularly affected, but how dietary strategies influenced species’ susceptibility to geographic range reductions remains unknown. We investigated 1) the importance of dietary strategies in explaining range reductions of carnivorous mammals (≄5% vertebrate meat consumption), and 2) differences in functional diversity of continental carnivore ensembles by comparing current, known ranges to current, expected ranges under a present-natural counterfactual scenario. The present-natural counterfactual estimates current mammal ranges had modern humans not expanded out of Africa during the Late Pleistocene and were not a main driver of extinctions and range contractions, alongside changing climates. Ranges of large-bodied hypercarnivorous mammals are currently smaller than expected, compared to smaller-bodied carnivorous mammals that consume less vertebrate meat. This resulted in consistent differences in continental functional diversity, whereby current ensembles of carnivorous mammals have undergone homogenisation through structural shifts towards smaller-bodied insectivorous and herbivorous species. The magnitude of ensemble structural shift varied among continents, with Australia experiencing the greatest difference. Weighting functional diversity by species’ geographic range sizes caused a three-fold greater shift in ensemble centroids than when using presence-absence alone. Conservation efforts should acknowledge current reductions in the potential geographic ranges of large-bodied hypercarnivores and aim to restore functional roles in carnivore ensembles, where possible, across continents

    Transferability of vegetation recovery models based on remote sensing across different fire regimes

    Get PDF
    P. 441-451Aim To evaluate the transferability between fire recurrence scenarios of post‐fire vegetation cover models calibrated with satellite imagery data at different spatial resolutions within two Mediterranean pine forest sites affected by large wildfires in 2012. Location The northwest and east of the Iberian Peninsula. Methods In each study site, we defined three fire recurrence scenarios for a reference period of 35 years. We used image texture derived from the surface reflectance channels of WorldView‐2 and Sentinel‐2 (at a spatial resolution of 2 m × 2 m and 20 m × 20 m, respectively) as predictors of post‐fire vegetation cover in Random Forest regression analysies. Percentage vegetation cover was sampled in two sets of field plots with a size roughly equivalent to the spatial resolution of the imagery. The plots were distributed following a stratified design according to fire recurrence scenarios. Model transferability was assessed within each study site by applying the vegetation cover model developed for a given fire recurrence scenario to predict vegetation cover in other scenarios, iteratively. Results For both wildfires, the highest model transferability between fire recurrence scenarios was achieved for those holding the most similar vegetation community composition regarding the balance of species abundance according to their plant‐regenerative traits (root mean square error [RMSE] around or lower than 15%). Model transferability performance was highly improved by fine‐grained remote‐sensing data. Conclusions Fire recurrence is a major driver of community structure and composition so the framework proposed in this study would allow land managers to reduce efforts in the context of post‐fire decision‐making to assess vegetation recovery within large burned landscapes with fire regime variability.S

    A global risk assessment of primates under climate and land use/cover scenarios

    Get PDF
    Primates are facing an impending extinction crisis, driven by extensive habitat loss, land use change, and hunting. Climate change is an additional threat, which alone or in combination with other drivers, may severely impact those taxa unable to track suitable environmental conditions. Here, we investigate the extent of climate and land use/cover (LUC) change‐related risks for primates. We employed an analytical approach to objectively select a subset of climate scenarios, for which we then calculated changes in climatic and LUC conditions for 2050 across primate ranges (N=426 species) under a best‐ and a worst‐case scenario. Generalised linear models were used to examine whether these changes varied according to region, conservation status, range extent, and dominant habitat. Finally, we reclassified primate ranges based on different magnitudes of maximum temperature change, and quantified the proportion of ranges overall and of primate hotspots in particular that are likely to be exposed to extreme temperature increases. We found that, under the worst‐case scenario, 74% of Neotropical forest‐dwelling primates are likely to be exposed to maximum temperature increases up to 7°C. In contrast, 38% of Malagasy savanna primates will experience less pronounced warming of up to 3.5°C. About one quarter of Asian and African primates will face up to 50% crop expansion within their range. Primary land (undisturbed habitat) is expected to disappear across species’ ranges, whereas secondary land (disturbed habitat) will increase by up to 98%. With 86% of primate ranges likely to be exposed to maximum temperature increases >3°C, primate hotspots in the Neotropics are expected to be particularly vulnerable. Our study highlights the fundamental exposure risk of a large percentage of primate ranges to predicted climate and LUC changes. Importantly, our findings underscore the urgency with which climate change mitigation measures need to be implemented to avert primate extinctions on an unprecedented scale

    Variation in abundances of common bird species associated with roads

    Get PDF
    1. The global road network, currently over 45 million lane-km in length, is expected to reach 70 million lane-km by 2050, while the number of vehicles utilising it is expected to double. Roads have been shown to affect a range of wildlife, including birds, but most studies have been relatively small scale. 2. We use data from across Great Britain to analyse the relationships between roads and the spatial distributions of bird populations. We model counts of 51 common and widespread species from the U.K. Breeding Bird Survey in relation to road exposure, which we calculated for each count site using the density, distance and traffic volume of all roads within a 5 km radius. In these models, we incorporate other factors known to affect bird populations, including agricultural intensity, human population, habitat and climate. Importantly, we also account for differences in detectability of birds near to roads. 3. The abundances of 30 species were strongly significantly related to exposure to either major or minor roads. Species were generally in higher abundances with increasing exposure to minor roads (20/28). In contrast, most significant associations between major road exposure and bird abundance were negative (7/8). 4. For species with significant effects of road exposure, we assessed how estimated abundance changed across the central 50% of road exposure experienced for each species. The mean decrease in abundance was 19% and the mean increase was 47%. These changes in bird abundance were up to half as large as those associated with increasing agricultural intensity, a factor often cited as a major cause of bird population changes. 5. Synthesis and applications. Our research shows many species to vary in abundance with increasing road exposure. This suggests that roads may modify bird populations on a national scale and that their potential as drivers of biodiversity change should not be overlooked. Our work highlights the need for appropriate mitigation of roads, particularly in areas important for avian biodiversity. This could include efforts to reduce impacts of road noise and/or collisions, such as reduced speed limits or quieter road surfaces in sensitive areas

    Supervised classification of landforms in Arctic mountains

    Get PDF
    Erosional and sediment fluxes from Arctic mountains are lower than for temperate mountain ranges due to the influence of permafrost on geomorphic processes. As permafrost extent declines in Arctic mountains, the spatial distribution of geomorphic processes and rates will change. Improved access to high‐quality remotely sensed topographic data in the Arctic provides an opportunity to develop our understanding of the spatial distribution of Arctic geomorphological processes and landforms. Utilizing newly available Arctic digital topography data, we have developed a method for geomorphic mapping using a pixel‐based linear discriminant analysis method that could be applied across Arctic mountains. We trained our classifier using landforms within the Adventdalen catchment in Svalbard and applied it to two adjacent catchments and one in Alaska. Slope gradient, elevation–relief ratio and landscape roughness distinguish landforms to a first order with >80% accuracy. Our simple classification system has a similar overall accuracy when compared across our field sites. The simplicity and robustness of our classification suggest that it is possible to use it to understand the distribution of Arctic mountain landforms using extant digital topography data and without specialized classifications. Our preliminary assessments of the distribution of geomorphic processes within these catchments demonstrate the importance of post‐glacial hillslope processes in governing sediment movement in Arctic mountains

    Plant damage in urban agroecosystems varies with local and landscape factors

    Get PDF
    Biotic and abiotic factors at local to landscape scales influence insect pest and disease dynamics in agricultural systems. However, relative to studies focused on the importance of these drivers of crop plant damage in rural agricultural systems, few studies investigate plant damage from herbivore insects and plant diseases in urban agroecosystems, and consequently, most urban farmers lack knowledge on crop protection tactics. Here we use three common crop species within urban agroecosystems (community gardens) distributed across an urban landscape as a model system to ask how local, landscape, and microclimate factors relate to herbivore and disease plant damage. We hypothesized that plant damage would be lower in gardens with greater local vegetation complexity, landscape‐scale complexity, and less variable temperatures, but that the importance of factors is species‐ and damage‐specific. By measuring Brassica, cucurbit, and tomato insect pest and disease damage across the growing season, we confirmed that the importance of factors varies with crop species and by damage type. Both local complexity factors (e.g., number of trees and shrubs) and landscape complexity (percent natural cover in the landscape) relate to lower incidence of herbivore and disease damage on some crops, supporting our prediction that habitat heterogeneity at both local and landscape scales lowers plant damage. Greater temperature variability related to higher disease damage on tomatoes linking microclimate factors to disease prevalence. Yet, local complexity factors also related to higher incidence of plant damage for other crop species, indicating variable species‐level impacts of local management factors on plant damage. By measuring the abundance of fungus‐feeding lady beetles (Psyllobora) on cucurbits, we confirmed a strong association between natural enemies and powdery mildew. We provide a case study on how changes in local to landscape‐scale factors relate to plant damage in urban agroecosystems and suggest how urban farmers and gardeners can apply this ecological knowledge to improve sustainable urban food production.TU Berlin, Open-Access-Mittel - 202

    Structure of trophic and mutualistic networks across broad environmental gradients

    Get PDF
    Citation: Welti, E. A. R., & Joern, A. (2015). Structure of trophic and mutualistic networks across broad environmental gradients. Ecology and Evolution, 5(2), 326-334. doi:10.1002/ece3.1371This study aims to understand how inherent ecological network structures of nestedness and modularity vary over large geographic scales with implications for community stability. Bipartite networks from previous research from 68 locations globally were analyzed. Using a meta-analysis approach, we examine relationships between the structure of 22 trophic and 46 mutualistic bipartite networks in response to extensive gradients of temperature and precipitation. Network structures varied significantly across temperature gradients. Trophic networks showed decreasing modularity with increasing variation in temperature within years. Nestedness of mutualistic networks decreased with increasing temperature variability between years. Mean annual precipitation and variability of precipitation were not found to have significant influence on the structure of either trophic or mutualistic networks. By examining changes in ecological networks across large-scale abiotic gradients, this study identifies temperature variability as a potential environmental mediator of community stability. Understanding these relationships contributes to our ability to predict responses of biodiversity to climate change at the community level

    Influence of spatial and temporal dynamics of agricultural practices on the lesser kestrel

    Get PDF
    1. European agriculture is facing dramatic changes that are likely to have marked impacts on farmland biodiversity. There is an urgent need to develop land management strategies compatible with the conservation of biodiversity.2. We applied a spatially explicit behaviour-based model to assess how farmland management and the pattern of events across the annual farming calendar influences the foraging decisions of lesser kestrels Falco naumanni in a cereal steppe landscape. Moreover, we simulated the most likely scenarios of future agricultural changes to predict its impacts on lesser kestrel breeding success. Lesser kestrels have been the subject of serious conservation concern and constitute a good model species to judge impacts on farmland species more widely.3. Our results show that the location of cereal and fallow patches within a 2-km radius of a kestrel colony influences the total food supply delivered to the nestlings, explaining the differences in breeding success between years and colonies. Furthermore, the particular sequence in which patches are harvested by farmers is also predicted to influence offspring survival.4. Agricultural intensification, simulated by increasing the proportion of cereal fields, is predicted to negatively influence breeding success. However, the field harvesting sequence can play an important role in alleviating the effects of the increased percentage of cereal, as demonstrated by the higher breeding success obtained when harvesting starts from patches farthest from the colonies. The replacement of cereal cultivation by low-intensity grazed fallows would not be detrimental for kestrels.5. Synthesis and applications. Our results highlight the effectiveness of behaviour-based models to evaluate the interacting effect of spatial and temporal dynamics of agricultural landscapes and predict the response of populations to environmental change. To optimize food availability for lesser kestrels, land managers should implement long rotational schemes with < 60% of the area under extensive cereal cultivation in a 2-km radius around colonies. Harvesting should start in the cereal patches farthest from colonies. Ideally, the predominant land use around colonies should be fallows. These outcomes illustrate how behaviour-based models can be applied to identify specific management recommendations that would improve the effectiveness of agri-environmental schemes, the most accepted tool for maintaining farmland landscapes
    • 

    corecore