28 research outputs found

    Ant Assemblage Structure in a Secondary Tropical Dry Forest: The Role of Ecological Succession and Seasonality

    Get PDF
    This study identified the main biological mechanisms governing the diversity of ants on different ecological time scales. Ants were sampled in 15 plots distributed in early, intermediate and late stages of succession (five plots per stage) at the Parque Estadual da Mata Seca, Brazil. At each sample point, unbaited pitfall traps were installed in hypogaeic, epigaeic and arboreal strata. We collected 95 ant species from 26 genera and nine subfamilies. Our results indicated that there was an increase in species richness in advanced stages of succession. We also observed that ant assemblages were different among successional stages. For the arboreal and epigaeic strata, species richness did not change with succession progression, but species composition of these two strata differed among successional stages. Unlike to arboreal and epigaeic ants, hypogaiec ant species richness was higher in the intermediate and late stages of succession and the composition of hypogaeic ants differed among successional stages. Similarity between ant species foraging in arboreal and epigaeic strata decreases with succession progression and β-diversity was higher in advanced successional stages. Additionally, species richness was higher in the dry season, whereas the composition of ant assemblages did not change between seasons. A considerable fraction of the ant assemblage was found only in advanced stages of succession, demonstrating the importance of secondary habitats in maintaining biodiversity in dry forests

    Composição, uso e conservação de espécies arbóreas em quintais de agricultores familiares na região da mata seca norte-mineira, Brasil

    Get PDF
    Homegardens contain agroforestry systems that provide diverse resources for familyconsumption in rural communities. The aim of this study was to perform an ethnobotanical inventory of the tree speciesand their uses in the homegardens of two small-scale rural farming communities situated near the Mata Seca State Park,Minas Gerais, Brazil, and to understand the potential role of these agroecosystems in the conservation of native treespecies. Local knowledge about species used was assessed using free lists with 20 small-scale farmers selected using thesnowball sampling technique in each community. All shrub and tree species with a circumference at the soil level 10 cmwere sampled in each homegarden. We confirmed that most plant species listed provided food (48.3%) and shade (35.6%),showing the importance of fruit trees and evergreens in the homegarden flora in this local semi-arid context. Other specieswere also cited as medicinal and ornamental plants. Besides that, some species listed were used for construction, fuel,fodder, fertilizer and other uses. Amongst the 87 tree species, 44 are Brazilian natives, and 23 can be found in the dryforests of the region. These results showed that homegardens can contribute to conservation and enhancement of localbiodiversity functioning as a reservoir of species with different biogeographic origins, including regionally endemic andnative trees. Furthermore we conclude that homegardens are important sources of plant resources for home consumptionand contribute towards a balanced diet and to the welfare of the people living in the communities of north Minas Gerais’semi-arid region.Quintais podem ser considerados sistemas agroflorestais domésticos que fornecem diversos recursos para finsde subsistência às famílias que vivem em comunidades rurais e urbanas, especialmente em países tropicais. Este estudoobjetivou realizar um levantamento etnobotânico das espécies arbóreas reconhecidas e utilizadas em quintais de duascomunidades de agricultores familiares situadas no entorno do Parque Estadual da Mata Seca, Minas Gerais, Brasil, bemcomo compreender o papel destes agroecossistemas para a conservação de árvores nativas. O conhecimento local sobre osusos atribuídos às espécies foi acessado por meio de listas livres com 20 agricultores selecionados pela técnica bola-deneveem cada comunidade. Em cada quintal, foram amostradas todas as espécies arbustivas e arbóreas com circunferênciano nível do solo > 10 cm. Verificou-se que a maioria das espécies registradas foi citada por fornecer alimentos (48,3%) esombra (35,6%), evidenciando a importância das árvores frutíferas e perenifólias na composição de quintais no contextosemiárido local. Também foram citadas plantas medicinais e ornamentais, além de espécies mencionadas como material deconstrução, combustível, forragem, adubo, dentre outros usos. Dentre as 87 espécies arbóreas amostradas nos quintais, 44são nativas do território brasileiro e 23 podem ser encontradas nas matas secas da região. Estes resultados evidenciam queos quintais podem contribuir para conservação e incremento da biodiversidade local, funcionando como reservatório deespécies com diversas origens biogeográficas, incluindo árvores endêmicas e nativas da região. Além disso, tambémconcluiu-se que os quintais são importantes fontes de recursos vegetais para autoconsumo, contribuindo principalmentepara complementação alimentar e para o bem-estar das famílias nas comunidades que habitam o Semiárido norte-mineiro.Palavras-chave adicionais: agrobiodiversidade, etnobotânica, Floresta Estacional Decidual

    Expanding tropical forest monitoring into Dry Forests: The DRYFLOR protocol for permanent plots

    Get PDF
    This is the final version. Available on open access from Wiley via the DOI in this recordSocietal Impact Statement Understanding of tropical forests has been revolutionized by monitoring in permanent plots. Data from global plot networks have transformed our knowledge of forests’ diversity, function, contribution to global biogeochemical cycles, and sensitivity to climate change. Monitoring has thus far been concentrated in rain forests. Despite increasing appreciation of their threatened status, biodiversity, and importance to the global carbon cycle, monitoring in tropical dry forests is still in its infancy. We provide a protocol for permanent monitoring plots in tropical dry forests. Expanding monitoring into dry biomes is critical for overcoming the linked challenges of climate change, land use change, and the biodiversity crisis.Newton FundNatural Environment Research Council (NERC)Fundação de Amparo à Pesquisa do Estado de São PauloCYTE

    Taking the pulse of Earth's tropical forests using networks of highly distributed plots

    Get PDF
    Tropical forests are the most diverse and productive ecosystems on Earth. While better understanding of these forests is critical for our collective future, until quite recently efforts to measure and monitor them have been largely disconnected. Networking is essential to discover the answers to questions that transcend borders and the horizons of funding agencies. Here we show how a global community is responding to the challenges of tropical ecosystem research with diverse teams measuring forests tree-by-tree in thousands of long-term plots. We review the major scientific discoveries of this work and show how this process is changing tropical forest science. Our core approach involves linking long-term grassroots initiatives with standardized protocols and data management to generate robust scaled-up results. By connecting tropical researchers and elevating their status, our Social Research Network model recognises the key role of the data originator in scientific discovery. Conceived in 1999 with RAINFOR (South America), our permanent plot networks have been adapted to Africa (AfriTRON) and Southeast Asia (T-FORCES) and widely emulated worldwide. Now these multiple initiatives are integrated via ForestPlots.net cyber-infrastructure, linking colleagues from 54 countries across 24 plot networks. Collectively these are transforming understanding of tropical forests and their biospheric role. Together we have discovered how, where and why forest carbon and biodiversity are responding to climate change, and how they feedback on it. This long-term pan-tropical collaboration has revealed a large long-term carbon sink and its trends, as well as making clear which drivers are most important, which forest processes are affected, where they are changing, what the lags are, and the likely future responses of tropical forests as the climate continues to change. By leveraging a remarkably old technology, plot networks are sparking a very modern revolution in tropical forest science. In the future, humanity can benefit greatly by nurturing the grassroots communities now collectively capable of generating unique, long-term understanding of Earth's most precious forests.Additional co-authors: Susan Laurance, William Laurance, Francoise Yoko Ishida, Andrew Marshall, Catherine Waite, Hannsjoerg Woell, Jean-Francois Bastin, Marijn Bauters, Hans Beeckman, Pfascal Boeckx, Jan Bogaert, Charles De Canniere, Thales de Haulleville, Jean-Louis Doucet, Olivier Hardy, Wannes Hubau, Elizabeth Kearsley, Hans Verbeeck, Jason Vleminckx, Steven W. Brewer, Alfredo Alarcón, Alejandro Araujo-Murakami, Eric Arets, Luzmila Arroyo, Ezequiel Chavez, Todd Fredericksen, René Guillén Villaroel, Gloria Gutierrez Sibauty, Timothy Killeen, Juan Carlos Licona, John Lleigue, Casimiro Mendoza, Samaria Murakami, Alexander Parada Gutierrez, Guido Pardo, Marielos Peña-Claros, Lourens Poorter, Marisol Toledo, Jeanneth Villalobos Cayo, Laura Jessica Viscarra, Vincent Vos, Jorge Ahumada, Everton Almeida, Jarcilene Almeida, Edmar Almeida de Oliveira, Wesley Alves da Cruz, Atila Alves de Oliveira, Fabrício Alvim Carvalho, Flávio Amorim Obermuller, Ana Andrade, Fernanda Antunes Carvalho, Simone Aparecida Vieira, Ana Carla Aquino, Luiz Aragão, Ana Claudia Araújo, Marco Antonio Assis, Jose Ataliba Mantelli Aboin Gomes, Fabrício Baccaro, Plínio Barbosa de Camargo, Paulo Barni, Jorcely Barroso, Luis Carlos Bernacci, Kauane Bordin, Marcelo Brilhante de Medeiros, Igor Broggio, José Luís Camargo, Domingos Cardoso, Maria Antonia Carniello, Andre Luis Casarin Rochelle, Carolina Castilho, Antonio Alberto Jorge Farias Castro, Wendeson Castro, Sabina Cerruto Ribeiro, Flávia Costa, Rodrigo Costa de Oliveira, Italo Coutinho, John Cunha, Lola da Costa, Lucia da Costa Ferreira, Richarlly da Costa Silva, Marta da Graça Zacarias Simbine, Vitor de Andrade Kamimura, Haroldo Cavalcante de Lima, Lia de Oliveira Melo, Luciano de Queiroz, José Romualdo de Sousa Lima, Mário do Espírito Santo, Tomas Domingues, Nayane Cristina dos Santos Prestes, Steffan Eduardo Silva Carneiro, Fernando Elias, Gabriel Eliseu, Thaise Emilio, Camila Laís Farrapo, Letícia Fernandes, Gustavo Ferreira, Joice Ferreira, Leandro Ferreira, Socorro Ferreira, Marcelo Fragomeni Simon, Maria Aparecida Freitas, Queila S. García, Angelo Gilberto Manzatto, Paulo Graça, Frederico Guilherme, Eduardo Hase, Niro Higuchi, Mariana Iguatemy, Reinaldo Imbrozio Barbosa, Margarita Jaramillo, Carlos Joly, Joice Klipel, Iêda Leão do Amaral, Carolina Levis, Antonio S. Lima, Maurício Lima Dan, Aline Lopes, Herison Madeiros, William E. Magnusson, Rubens Manoel dos Santos, Beatriz Marimon, Ben Hur Marimon Junior, Roberta Marotti Martelletti Grillo, Luiz Martinelli, Simone Matias Reis, Salomão Medeiros, Milton Meira-Junior, Thiago Metzker, Paulo Morandi, Natanael Moreira do Nascimento, Magna Moura, Sandra Cristina Müller, Laszlo Nagy, Henrique Nascimento, Marcelo Nascimento, Adriano Nogueira Lima, Raimunda Oliveira de Araújo, Jhonathan Oliveira Silva, Marcelo Pansonato, Gabriel Pavan Sabino, Karla Maria Pedra de Abreu, Pablo José Francisco Pena Rodrigues, Maria Piedade, Domingos Rodrigues, José Roberto Rodrigues Pinto, Carlos Quesada, Eliana Ramos, Rafael Ramos, Priscyla Rodrigues, Thaiane Rodrigues de Sousa, Rafael Salomão, Flávia Santana, Marcos Scaranello, Rodrigo Scarton Bergamin, Juliana Schietti, Jochen Schöngart, Gustavo Schwartz, Natalino Silva, Marcos Silveira, Cristiana Simão Seixas, Marta Simbine, Ana Claudia Souza, Priscila Souza, Rodolfo Souza, Tereza Sposito, Edson Stefani Junior, Julio Daniel do Vale, Ima Célia Guimarães Vieira, Dora Villela, Marcos Vital, Haron Xaud, Katia Zanini, Charles Eugene Zartman, Nur Khalish Hafizhah Ideris, Faizah binti Hj Metali, Kamariah Abu Salim, Muhd Shahruney Saparudin, Rafizah Mat Serudin, Rahayu Sukmaria Sukri, Serge Begne, George Chuyong, Marie Noel Djuikouo, Christelle Gonmadje, Murielle Simo-Droissart, Bonaventure Sonké, Hermann Taedoumg, Lise Zemagho, Sean Thomas, Fidèle Baya, Gustavo Saiz, Javier Silva Espejo, Dexiang Chen, Alan Hamilton, Yide Li, Tushou Luo, Shukui Niu, Han Xu, Zhang Zhou, Esteban Álvarez-Dávila, Juan Carlos Andrés Escobar, Henry Arellano-Peña, Jaime Cabezas Duarte, Jhon Calderón, Lina Maria Corrales Bravo, Borish Cuadrado, Hermes Cuadros, Alvaro Duque, Luisa Fernanda Duque, Sandra Milena Espinosa, Rebeca Franke-Ante, Hernando García, Alejandro Gómez, Roy González-M., Álvaro Idárraga-Piedrahíta, Eliana Jimenez, Rubén Jurado, Wilmar López Oviedo, René López-Camacho, Omar Aurelio Melo Cruz, Irina Mendoza Polo, Edwin Paky, Karen Pérez, Angel Pijachi, Camila Pizano, Adriana Prieto, Laura Ramos, Zorayda Restrepo Correa, James Richardson, Elkin Rodríguez, Gina M. Rodriguez M., Agustín Rudas, Pablo Stevenson, Markéta Chudomelová, Martin Dancak, Radim Hédl, Stanislav Lhota, Martin Svatek, Jacques Mukinzi, Corneille Ewango, Terese Hart, Emmanuel Kasongo Yakusu, Janvier Lisingo, Jean-Remy Makana, Faustin Mbayu, Benjamin Toirambe, John Tshibamba Mukendi, Lars Kvist, Gustav Nebel, Selene Báez, Carlos Céron, Daniel M. Griffith, Juan Ernesto Guevara Andino, David Neill, Walter Palacios, Maria Cristina Peñuela-Mora, Gonzalo Rivas-Torres, Gorky Villa, Sheleme Demissie, Tadesse Gole, Techane Gonfa, Kalle Ruokolainen, Michel Baisie, Fabrice Bénédet, Wemo Betian, Vincent Bezard, Damien Bonal, Jerôme Chave, Vincent Droissart, Sylvie Gourlet-Fleury, Annette Hladik, Nicolas Labrière, Pétrus Naisso, Maxime Réjou-Méchain, Plinio Sist, Lilian Blanc, Benoit Burban, Géraldine Derroire, Aurélie Dourdain, Clement Stahl, Natacha Nssi Bengone, Eric Chezeaux, Fidèle Evouna Ondo, Vincent Medjibe, Vianet Mihindou, Lee White, Heike Culmsee, Cristabel Durán Rangel, Viviana Horna, Florian Wittmann, Stephen Adu-Bredu, Kofi Affum-Baffoe, Ernest Foli, Michael Balinga, Anand Roopsind, James Singh, Raquel Thomas, Roderick Zagt, Indu K. Murthy, Kuswata Kartawinata, Edi Mirmanto, Hari Priyadi, Ismayadi Samsoedin, Terry Sunderland, Ishak Yassir, Francesco Rovero, Barbara Vinceti, Bruno Hérault, Shin-Ichiro Aiba, Kanehiro Kitayama, Armandu Daniels, Darlington Tuagben, John T. Woods, Muhammad Fitriadi, Alexander Karolus, Kho Lip Khoon, Noreen Majalap, Colin Maycock, Reuben Nilus, Sylvester Tan, Almeida Sitoe, Indiana Coronado G., Lucas Ojo, Rafael de Assis, Axel Dalberg Poulsen, Douglas Sheil, Karen Arévalo Pezo, Hans Buttgenbach Verde, Victor Chama Moscoso, Jimmy Cesar Cordova Oroche, Fernando Cornejo Valverde, Massiel Corrales Medina, Nallaret Davila Cardozo, Jano de Rutte Corzo, Jhon del Aguila Pasquel, Gerardo Flores Llampazo, Luis Freitas, Darcy Galiano Cabrera, Roosevelt García Villacorta, Karina Garcia Cabrera, Diego García Soria, Leticia Gatica Saboya, Julio Miguel Grandez Rios, Gabriel Hidalgo Pizango, Eurídice Honorio Coronado, Isau Huamantupa-Chuquimaco, Walter Huaraca Huasco, Yuri Tomas Huillca Aedo, Jose Luis Marcelo Peña, Abel Monteagudo Mendoza, Vanesa Moreano Rodriguez, Percy Núñez Vargas, Sonia Cesarina Palacios Ramos, Nadir Pallqui Camacho, Antonio Peña Cruz, Freddy Ramirez Arevalo, José Reyna Huaymacari, Carlos Reynel Rodriguez, Marcos Antonio Ríos Paredes, Lily Rodriguez Bayona, Rocio del Pilar Rojas Gonzales, Maria Elena Rojas Peña, Norma Salinas Revilla, Yahn Carlos Soto Shareva, Raul Tupayachi Trujillo, Luis Valenzuela Gamarra, Rodolfo Vasquez Martinez, Jim Vega Arenas, Christian Amani, Suspense Averti Ifo, Yannick Bocko, Patrick Boundja, Romeo Ekoungoulou, Mireille Hockemba, Donatien Nzala, Alusine Fofanah, David Taylor, Guillermo Bañares-de Dios, Luis Cayuela, Íñigo Granzow-de la Cerda, Manuel Macía, Juliana Stropp, Maureen Playfair, Verginia Wortel, Toby Gardner, Robert Muscarella, Hari Priyadi, Ervan Rutishauser, Kuo-Jung Chao, Pantaleo Munishi, Olaf Bánki, Frans Bongers, Rene Boot, Gabriella Fredriksson, Jan Reitsma, Hans ter Steege, Tinde van Andel, Peter van de Meer, Peter van der Hout, Mark van Nieuwstadt, Bert van Ulft, Elmar Veenendaal, Ronald Vernimmen, Pieter Zuidema, Joeri Zwerts, Perpetra Akite, Robert Bitariho, Colin Chapman, Eilu Gerald, Miguel Leal, Patrick Mucunguzi, Miguel Alexiades, Timothy R. Baker, Karina Banda, Lindsay Banin, Jos Barlow, Amy Bennett, Erika Berenguer, Nicholas Berry, Neil M. Bird, George A. Blackburn, Francis Brearley, Roel Brienen, David Burslem, Lidiany Carvalho, Percival Cho, Fernanda Coelho, Murray Collins, David Coomes, Aida Cuni-Sanchez, Greta Dargie, Kyle Dexter, Mat Disney, Freddie Draper, Muying Duan, Adriane Esquivel-Muelbert, Robert Ewers, Belen Fadrique, Sophie Fauset, Ted R. Feldpausch, Filipe França, David Galbraith, Martin Gilpin, Emanuel Gloor, John Grace, Keith Hamer, David Harris, Tommaso Jucker, Michelle Kalamandeen, Bente Klitgaard, Aurora Levesley, Simon L. Lewis, Jeremy Lindsell, Gabriela Lopez-Gonzalez, Jon Lovett, Yadvinder Malhi, Toby Marthews, Emma McIntosh, Karina Melgaço, William Milliken, Edward Mitchard, Peter Moonlight, Sam Moore, Alexandra Morel, Julie Peacock, Kelvin Peh, Colin Pendry, R. Toby Pennington, Luciana de Oliveira Pereira, Carlos Peres, Oliver L. Phillips, Georgia Pickavance, Thomas Pugh, Lan Qie, Terhi Riutta, Katherine Roucoux, Casey Ryan, Tiina Sarkinen, Camila Silva Valeria, Dominick Spracklen, Suzanne Stas, Martin Sullivan, Michael Swaine, Joey Talbot, James Taplin, Geertje van der Heijden, Laura Vedovato, Simon Willcock, Mathew Williams, Luciana Alves, Patricia Alvarez Loayza, Gabriel Arellano, Cheryl Asa, Peter Ashton, Gregory Asner, Terry Brncic, Foster Brown, Robyn Burnham, Connie Clark, James Comiskey, Gabriel Damasco, Stuart Davies, Tony Di Fiore, Terry Erwin, William Farfan-Rios, Jefferson Hall, David Kenfack, Thomas Lovejoy, Roberta Martin, Olga Martha Montiel, John Pipoly, Nigel Pitman, John Poulsen, Richard Primack, Miles Silman, Marc Steininger, Varun Swamy, John Terborgh, Duncan Thomas, Peter Umunay, Maria Uriarte, Emilio Vilanova Torre, Ophelia Wang, Kenneth Young, Gerardo A. Aymard C., Lionel Hernández, Rafael Herrera Fernández, Hirma Ramírez-Angulo, Pedro Salcedo, Elio Sanoja, Julio Serrano, Armando Torres-Lezama, Tinh Cong Le, Trai Trong Le, Hieu Dang Tra

    Data from: Interception of Rainfall in Successional Tropical Dry Forests in Brazil and Costa Rica

    No full text
    Daily data in mm to estimate rainfall interception in sucessional dry forests of Costa Rica and Brazil, these data include: daily gross rainfall, daily throughfall, daily stemflowl, daily rainfall interception and daily net rainfall collected in three succesional stages of tropical dry forest in Costa Rica and Brazil. This data is linked to the following publication. Calvo-Alvarado, J.C.; Jiménez-Rodríguez, C.D.; Calvo-Obando, A.J.; Marcos do Espírito-Santo, M.; Gonçalves-Silva, T. Interception of Rainfall in Successional Tropical Dry Forests in Brazil and Costa Rica. Geosciences 2018, 8, 486. https://doi.org/10.3390/geosciences8120486 If you would like to use the database, we request that you: 1. Notify the main address of correspondence (Julio Calvo Alvarado) if you plan to use the database in a publication. 2. Provide recognition of the efforts of this group by using the following citation for the database. Calvo-Alvarado, J. C., Rodríguez, C. J., Calvo-Obando, A. J., Espírito-Santo, M. M. d, & Gonçalves-Silva, T. (2020, August 10). Data from: Interception of Rainfall in Successional Tropical Dry Forests in Brazil and Costa Rica. https://doi.org/10.17605/OSF.IO/RDM3H 3. This data base is License CC0 1.0 Universa

    Interception of Rainfall in Successional Tropical Dry Forests in Brazil and Costa Rica

    No full text
    Tropical dry forests (TDF) are endangered ecosystems characterized by a matrix of successional forest patches with structural differences across the Neotropics. Until now, there have been few studies that analyze the partitioning of rainfall by forest interception in TDF. To contribute to the understanding of the TDF impact on the hydrological dynamic at the ecosystem and landscape levels, a rainfall interception study was conducted in Santa Rosa National Park in Costa Rica (SRNP) and in Mata Seca State Park in Brazil (MSSP). In each site, three plots per successional stage were studied. The successional stages were early, intermediate, and late. In each plot the rainfall, throughfall, and stemflow were monitored during one rainy season. The relationship between gross rainfall and water fluxes was evaluated using linear regression models. In general, net rainfall oscillated from 79.3% to 85.4% of gross rainfall in all the plots in MSSP without any trend related to forest succession, due to the effect of a high density of lianas in the intermediate and late stage plots. In SRNP, there was a clear trend of net rainfall among successional stages: 87.5% (early), 73.0% (intermediate), and 63.4% (late). Net rainfall correlated negatively only with plant area index in SRNP (r = −0.755, p < 0.05). This study highlights the need to study rainfall interception in successional stages to estimate net rainfall that reaches the soil. This would provide better hydrological information to understand water balance and water fluxes at the level of forest ecosystems and landscapes

    Sensoriamento remoto como suporte para quantificação do desmatamento de floresta estacional decidual no Norte de Minas Gerais

    No full text
    This study aimed to evaluate and quantify the deforestation occurred in the area of tropical deciduous forest in northern Minas Gerais State for the years 1986, 1996 and 2006. To this purpose, we used data for the series of TM - Landsat 5, provided by the National Institute for Space Research (INPE), and indices derived from these images according to the methodology presented by Carvalho (2005). We also used data provided by the State Forestry Institute (IEF) for the year 2006. Ou results showed that deforestation rates were high during the last 20 years, with strong pressures on the deciduous forest in northern Minas Gerais, especially by cattle raising and irrigated agriculture. Thus, there is an urgent demand for initiatives to stimulate the economic zoning and sustainable use of tropical dry forests in this region. Together with the enforcement of environmental laws, it might mitigate the impacts of deforestation in northern Minas Gerais in the forthcoming decades.Pages: 8583-859

    Data from: Understanding patterns of land-cover change in the Brazilian Cerrado from 2000 to 2015

    No full text
    Clearing tropical vegetation impacts biodiversity, the provision of ecosystem services, and thus ultimately human welfare. We quantified changes in land cover from 2000 to 2015 across the Cerrado biome of northern Minas Gerais state, Brazil. We assessed the potential biophysical and social-economic drivers of the loss of Cerrado, natural regeneration and net cover change at the municipality level. Further, we evaluated correlations between these land change variables and indicators of human welfare. We detected extensive land cover changes in the study area, with the conversion of 23,446 km2 and the natural regeneration of 13,926 km2, resulting in a net loss of 9,520 km2. The annual net loss (-1.2% per year) of the cover of Cerrado is higher than that reported for the whole biome in similar periods. We argue that environmental and economic variables interact to underpin rates of conversion of Cerrado, most severely affecting more humid Cerrado lowlands. While rates of Cerrado regeneration are important for conservation strategies of the remaining biome, their integrity must be investigated given the likelihood of encroachment. Given the high frequency of land abandonment in tropical regions, secondary vegetation is fundamental to maintain biodiversity and ecosystem services. Finally, the impacts of Cerrado conversion on human welfare likely vary from local to regional scales, making it difficult to elaborate land use policies based solely on social-economic indicators
    corecore