84 research outputs found

    Binding of cell-penetrating penetratin peptides to plasma membrane vesicles correlates directly with cellular uptake

    Get PDF
    AbstractCell-penetrating peptides (CPPs) gain access to intracellular compartments mainly via endocytosis and have capacity to deliver macromolecular cargo into cells. Although the involvement of various endocytic routes has been described it is still unclear which interactions are involved in eliciting an uptake response and to what extent affinity for particular cell surface components may determine the efficiency of a particular CPP. Previous biophysical studies of the interaction between CPPs and either lipid vesicles or soluble sugar-mimics of cell surface proteoglycans, the two most commonly suggested CPP binding targets, have not allowed quantitative correlations to be established. We here explore the use of plasma membrane vesicles (PMVs) derived from cultured mammalian cells as cell surface models in biophysical experiments. Further, we examine the relationship between affinity for PMVs and uptake into live cells using the CPP penetratin and two analogs enriched in arginines and lysines respectively. We show, using centrifugation to sediment PMVs, that the amount of peptide in the pellet fraction correlates linearly with the degree of cell internalization and that the relative efficiency of all-arginine and all-lysine variants of penetratin can be ascribed to their respective cell surface affinities. Our data show differences between arginine- and lysine-rich variants of penetratin that has not been previously accounted for in studies using lipid vesicles. Our data also indicate greater differences in binding affinity to PMVs than to heparin, a commonly used cell surface proteoglycan mimic. Taken together, this suggests that the cell surface interactions of CPPs are dependent on several cell surface moieties and their molecular organization on the plasma membrane

    Solvent exposure of Tyr10 as a probe of structural differences between monomeric and aggregated forms of the amyloid-β peptide.

    Get PDF
    Aggregation of amyloid-β (Aβ) peptides is a characteristic pathological feature of Alzheimer's disease. We have exploited the relationship between solvent exposure and intrinsic fluorescence of a single tyrosine residue, Tyr10, in the Aβ sequence to probe structural features of the monomeric, oligomeric and fibrillar forms of the 42-residue Aβ1-42. By monitoring the quenching of Tyr10 fluorescence upon addition of water-soluble acrylamide, we show that in Aβ1-42 oligomers this residue is solvent-exposed to a similar extent to that found in the unfolded monomer. By contrast, Tyr10 is significantly shielded from acrylamide quenching in Aβ1-42 fibrils, consistent with its proximity to the fibrillar cross-β core. Furthermore, circular dichroism measurements reveal that Aβ1-42 oligomers have a considerably lower β-sheet content than the Aβ1-42 fibrils, indicative of a less ordered molecular arrangement in the former. Taken together these findings suggest significant differences in the structural assembly of oligomers and fibrils that are consistent with differences in their biological effects.This work was funded by grants to E.K.E from the Wenner-Gren Foundations, the Hasselblad Foundation, and the Swedish Innovation Agency (Vinnova) and to C.M.D from the Wellcome Trust. The TEM imaging was carried out in the Multi-Imaging Unit in the Department of Physiology, Development and Neuroscience, University of Cambridge, UK and quantitative amino acid analysis was carried out at the Protein and Nucleic Acid Chemistry Facility, Department of Biochemistry, University of Cambridge, UK.This is the final version of the article. It was first available from Elsevier via http://dx.doi.org/10.1016/j.bbrc.2015.11.01

    Direct observations of amyloid β self-assembly in live cells provide insights into differences in the kinetics of Aβ(1-40) and Aβ(1-42) aggregation.

    Get PDF
    Insight into how amyloid β (Aβ) aggregation occurs in vivo is vital for understanding the molecular pathways that underlie Alzheimer's disease and requires new techniques that provide detailed kinetic and mechanistic information. Using noninvasive fluorescence lifetime recordings, we imaged the formation of Aβ(1-40) and Aβ(1-42) aggregates in live cells. For both peptides, the cellular uptake via endocytosis is rapid and spontaneous. They are then retained in lysosomes, where their accumulation leads to aggregation. The kinetics of Aβ(1-42) aggregation are considerably faster than those of Aβ(1-40) and, unlike those of the latter peptide, show no detectable lag phase. We used superresolution fluorescence imaging to examine the resulting aggregates and could observe compact amyloid structures, likely because of spatial confinement within cellular compartments. Taken together, these findings provide clues as to how Aβ aggregation may occur within neurons

    Using Tetracysteine-Tagged TDP-43 with a Biarsenical Dye To Monitor Real-Time Trafficking in a Cell Model of Amyotrophic Lateral Sclerosis.

    Get PDF
    TAR DNA-binding protein 43 (TDP-43) has been identified as the major constituent of the proteinaceous inclusions that are characteristic of most forms of amyotrophic lateral sclerosis (ALS) and ubiquitin positive frontotemporal lobar degeneration (FTLD). Wild type TDP-43 inclusions are a pathological hallmark of >95% of patients with sporadic ALS and of the majority of familial ALS cases, and they are also found in a significant proportion of FTLD cases. ALS is the most common form of motor neuron disease, characterized by progressive weakness and muscular wasting, and typically leads to death within a few years of diagnosis. To determine how the translocation and misfolding of TDP-43 contribute to ALS pathogenicity, it is crucial to define the dynamic behavior of this protein within the cellular environment. It is therefore necessary to develop cell models that allow the location of the protein to be defined. We report the use of TDP-43 with a tetracysteine tag for visualization using fluorogenic biarsenical compounds and show that this model displays features of ALS observed in other cell models. We also demonstrate that this labeling procedure enables live-cell imaging of the translocation of the protein from the nucleus into the cytosol

    Nanobodies Raised against Monomeric α-Synuclein Distinguish between Fibrils at Different Maturation Stages

    Get PDF
    AbstractNanobodies are single-domain fragments of camelid antibodies that are emerging as versatile tools in biotechnology. We describe here the interactions of a specific nanobody, NbSyn87, with the monomeric and fibrillar forms of α-synuclein (αSyn), a 140-residue protein whose aggregation is associated with Parkinson's disease. We have characterized these interactions using a range of biophysical techniques, including nuclear magnetic resonance and circular dichroism spectroscopy, isothermal titration calorimetry and quartz crystal microbalance measurements. In addition, we have compared the results with those that we have reported previously for a different nanobody, NbSyn2, also raised against monomeric αSyn. This comparison indicates that NbSyn87 and NbSyn2 bind with nanomolar affinity to distinctive epitopes within the C-terminal domain of soluble αSyn, comprising approximately amino acids 118–131 and 137–140, respectively. The calorimetric and quartz crystal microbalance data indicate that the epitopes of both nanobodies are still accessible when αSyn converts into its fibrillar structure. The apparent affinities and other thermodynamic parameters defining the binding between the nanobody and the fibrils, however, vary significantly with the length of time that the process of fibril formation has been allowed to progress and with the conditions under which formation occurs, indicating that the environment of the C-terminal domain of αSyn changes as fibril assembly takes place. These results demonstrate that nanobodies are able to target forms of potentially pathogenic aggregates that differ from each other in relatively minor details of their structure, such as those associated with fibril maturation

    Novel endosomolytic compounds enable highly potent delivery of antisense oligonucleotides

    Get PDF
    The therapeutic and research potentials of oligonucleotides (ONs) have been hampered in part by their inability to effectively escape endosomal compartments to reach their cytosolic and nuclear targets. Splice-switching ONs (SSOs) can be used with endosomolytic small molecule compounds to increase functional delivery. So far, development of these compounds has been hindered by a lack of high-resolution methods that can correlate SSO trafficking with SSO activity. Here we present in-depth characterization of two novel endosomolytic compounds by using a combination of microscopic and functional assays with high spatiotemporal resolution. This system allows the visualization of SSO trafficking, evaluation of endosomal membrane rupture, and quantitates SSO functional activity on a protein level in the presence of endosomolytic compounds. We confirm that the leakage of SSO into the cytosol occurs in parallel with the physical engorgement of LAMP1-positive late endosomes and lysosomes. We conclude that the new compounds interfere with SSO trafficking to the LAMP1-positive endosomal compartments while inducing endosomal membrane rupture and concurrent ON escape into the cytosol. The efficacy of these compounds advocates their use as novel, potent, and quick-acting transfection reagents for antisense ONs

    Morphology-Specific Inhibition of β-Amyloid Aggregates by 17β-Hydroxysteroid Dehydrogenase Type 10

    Get PDF
    A major hallmark of Alzheimer's disease (AD) is the formation of toxic aggregates of the β-amyloid peptide (Aβ). Given that Aβ peptides are known to localise within mitochondria and interact with 17β-HSD10, a mitochondrial protein expressed at high levels in AD brains, we investigated the inhibitory potential of 17β-HSD10 against Aβ aggregation under a range of physiological conditions. Fluorescence self-quenching (FSQ) of Aβ(1-42) labelled with HiLyte Fluor 555 was used to evaluate the inhibitory effect under conditions established to grow distinct Aβ morphologies. 17β-HSD10 preferentially inhibits the formation of globular and fibrillar-like structures but has no effect on the growth of amorphous plaque-like aggregates at endosomal pH 6. This work provides insights into the dependence of the Aβ-17β-HSD10 interaction with the morphology of Aβ aggregates and how this impacts enzymatic function. 17 β-HSD10 interaction with Aβ amyloid: what type of amyloid? 17β-hydroxysteroid dehydrogenase type 10 interacts with β-amyloid (Aβ) aggregates and suppresses Aβ-induced apoptosis in neurons, but the aggregate morphology inhibited by 17β-HSD10 remains unknown. Fluorescence self-quenching demonstrated that fibrils and globular aggregates, but not plaques, are targeted by 17β-HSD10

    Interaction of short modified peptides deriving from glycoprotein gp36 of feline immunodeficiency virus with phospholipid membranes

    Get PDF
    A tryptophan-rich octapeptide, C8 (Ac-Trp-Glu-Asp-Trp-Val-Gly-Trp-Ile-NH2), modelled on the membrane-proximal external region of the feline immunodeficiency virus (FIV) gp36 glycoprotein ectodomain, exhibits potent antiviral activity against FIV. A mechanism has been proposed by which the peptide, being positioned on the surface of the cell membrane, inhibits its fusion with the virus. In the present work, peptide–lipid interactions of C8 with dimyristoyl phosphatidylcholine liposomes are investigated using electron spin resonance spectroscopy of spin-labelled lipids. Three other peptides, obtained from modifications of C8, have also been investigated, in an attempt to clarify the essential molecular features of the interactions involving the tryptophan residues. The results show that C8 adsorbs strongly on the bilayer surface. Membrane binding requires not only the presence of the Trp residues in the sequence, but also their common orientation on one side of the peptide that is engendered by the WX2 WX2 W motif. Membrane interaction correlates closely with peptide antiviral activity, indicating that the membrane is essential in stabilizing the peptide conformation that will be able to inhibit viral infection

    Epidemiology of chronic kidney disease in children

    Get PDF
    In the past 30 years there have been major improvements in the care of children with chronic kidney disease (CKD). However, most of the available epidemiological data stem from end-stage renal disease (ESRD) registries and information on the earlier stages of pediatric CKD is still limited. The median reported incidence of renal replacement therapy (RRT) in children aged 0–19 years across the world in 2008 was 9 per million of the age-related population (4–18 years). The prevalence of RRT in 2008 ranged from 18 to 100 per million of the age-related population. Congenital disorders, including congenital anomalies of the kidney and urinary tract (CAKUT) and hereditary nephropathies, are responsible for about two thirds of all cases of CKD in developed countries, while acquired causes predominate in developing countries. Children with congenital disorders experience a slower progression of CKD than those with glomerulonephritis, resulting in a lower proportion of CAKUT in the ESRD population compared with less advanced stages of CKD. Most children with ESRD start on dialysis and then receive a transplant. While the survival rate of children with ERSD has improved, it remains about 30 times lower than that of healthy peers. Children now mainly die of cardiovascular causes and infection rather than from renal failure
    corecore