147 research outputs found

    Liquid chromatography-quadrupole time-of-flight mass spectrometry for screening in vitro drug metabolites in humans: Investigation on seven phenethylamine-based designer drugs

    Get PDF
    Phenethylamine-based designer drugs are prevalent within the new psychoactive substance market. Characterisation of their metabolites is important in order to identify suitable biomarkers which can be used for better monitoring their consumption. Careful design of in vitro metabolism experiments using subcellular liver fractions will assist in obtaining reliable outcomes for such purposes. The objective of this study was to stepwise investigate the in vitro human metabolism of seven phenethylamine-based designer drugs using individual families of enzymes. This included para-methoxyamphetamine, para-methoxymethamphetamine, 4-methylthioamphetamine, N-methyl-benzodioxolylbutanamine, benzodioxolylbutanamine, 5-(2-aminopropyl) benzofuran and 6-(2-aminopropyl) benzofuran. Identification and structural elucidation of the metabolites was performed using liquid chromatography-quadrupole-time-of-flight mass spectrometry. The targeted drugs were mainly metabolised by cytochrome P450 enzymes via O-dealkylation as the major pathway, followed by N-dealkylation, oxidation of unsubstituted C atoms and deamination (to a small extent). These drugs were largely free from Phase II metabolism. Only a limited number of metabolites were found which was consistent with the existing literature for other phenethylamine-based drugs. Also, the metabolism of most of the targeted drugs progressed at slow rate. The reproducibility of the identified metabolites was assessed through examining formation patterns using different incubation times, substrate and enzyme concentrations. Completion of the work has led to a set of metabolites which are representative for specific detection of these drugs in intoxicated individuals and also for meaningful evaluation of their use in communities by wastewater-based drug epidemiology

    Blockade of IGF2R improves muscle regeneration and ameliorates Duchenne muscular dystrophy

    Get PDF
    Duchenne muscular dystrophy (DMD) is a debilitating fatal X-linked muscle disorder. Recent findings indicate that IGFs play a central role in skeletal muscle regeneration and development. Among IGFs, insulinlike growth factor 2 (IGF2) is a key regulator of cell growth, survival, migration and differentiation. The type 2 IGF receptor (IGF2R) modulates circulating and tissue levels of IGF2 by targeting it to lysosomes for degradation. We found that IGF2R and the store-operated Ca2+ channel CD20 share a common hydrophobic binding motif that stabilizes their association. Silencing CD20 decreased myoblast differentiation, whereas blockade of IGF2R increased proliferation and differentiation in myoblasts via the calmodulin/calcineurin/NFAT pathway. Remarkably, anti-IGF2R induced CD20 phosphorylation, leading to the activation of sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA) and removal of intracellular Ca2+. Interestingly, we found that IGF2R expression was increased in dystrophic skeletal muscle of human DMD patients and mdx mice. Blockade of IGF2R by neutralizing antibodies stimulated muscle regeneration, induced force recovery and normalized capillary architecture in dystrophic mdx mice representing an encouraging starting point for the development of new biological therapies for DMD

    The synthesis and characterization of the 'research chemical' N-(1-amino-3-methyl-1-oxobutan-2-yl)-1-(cyclohexylmethyl)-3-(4-fluorophenyl)-1H-pyrazole-5-carboxamide (3,5-AB-CHMFUPPYCA) and differentiation from its 5,3-regioisomer.

    Get PDF
    This study presents the identification of N-(1-amino-3-methyl-1-oxobutan-2-yl)-1-(cyclohexylmethyl)-3-(4-fluorophenyl)-1H-pyrazole-5-carboxamide that was termed 3,5-AB-CHMFUPPYCA. This compound was obtained from a UK-based Internet vendor, who erroneously advertised this 'research chemical' as AZ-037 and which would have been associated with (S)-N-(1-amino-3-methyl-1-oxobutan-2-yl)-1-(5-fluoropentyl)-5-(4-fluorophenyl)-1H-pyrazole-3-carboxamide. The presence of the pyrazole core indicates a bioisosteric replacement of an indazole ring that is frequently associated with synthetic cannabinoids of the PINACA, FUBINACA, and CHMINACA series. The pyrazole ring system present in 3,5-AB-CHMFUPPYCA gives rise to the regioisomer N-(1-amino-3-methyl-1-oxobutan-2-yl)-1-(cyclohexylmethyl)-5-(4-fluorophenyl)-1H-pyrazole-3-carboxamide (named 5,3-AB-CHMFUPPYCA) and both isomers were synthesized using two specific routes which supported the correct identification of the 'research chemical' as 3,5-AB-CHMFUPPYCA. Both isomers could be conveniently differentiated. Interestingly, a route specific chlorine-containing by-product also was observed during the synthesis of 3,5-AB-CHMFUPPYCA and identified as N-(1-amino-3-methyl-1-oxobutan-2-yl)-4-chloro-1-(cyclohexylmethyl)-3-(4-fluorophenyl)-1H-pyrazole-5-carboxamide. An extensive analytical characterization included chromatographic, spectroscopic, mass spectrometric platforms as well as crystal structure analysis. The syntheses and analytical characterizations of both AB-CHMFUPPYCA isomers are reported for the first time and serves as a reminder that the possibility of mislabeling of 'research chemicals' cannot be excluded. The pharmacological activities of both AB-CHMFUPPYCA isomers remain to be explored. Copyright © 2015 John Wiley & Sons, Ltd

    Improvement of endurance of DMD animal model using natural polyphenols

    Get PDF
    Duchenne Muscular Dystrophy (DMD), the most common form of muscular dystrophy, is characterized by muscular wasting caused by dystrophin deficiency that ultimately ends in force reduction and premature death. In addition to primary genetic defect, several mechanisms contribute to DMD pathogenesis. Recently, antioxidant supplementation was shown to be effective in the treatment of multiple diseases including muscular dystrophy. Different mechanisms were hypothesized such as reduced hydroxyl radicals, nuclear factor-\u3baB deactivation and NO protection from inactivation. Following these promising evidences, we investigated the effect of the administration of a mix of dietary natural polyphenols (ProAbe) on dystrophic mdx mice in term of muscular architecture and functionality. We observed a reduction of muscle fibrosis deposition and myofiber necrosis together with an amelioration of vascolarization. More importantly, the recovery of the morphological features of dystrophic muscle leads to an improvement of the endurance of treated dystrophic mice. Our data confirmed that ProAbe-based diet may represent a strategy to co-adjuvate the treatment of DMD

    Impaired Angiogenic Potential of Human Placental Mesenchymal Stromal Cells in Intrauterine Growth Restriction

    Get PDF
    Human placental mesenchymal stromal cells (pMSCs) have never been investigated in intrauterine growth restriction (IUGR). We characterized cells isolated from placental membranes and the basal disc of six IUGR and five physiological placentas. Cell viability and proliferation were assessed every 7 days during a 6-week culture. Expression of hematopoietic, stem, endothelial, and mesenchymal markers was evaluated by flow cytometry. We characterized the multipotency of pMSCs and the expression of genes involved in mitochondrial content and function. Cell viability was high in all samples, and proliferation rate was lower in IUGR compared with control cells. All samples presented a starting heterogeneous population, shifting during culture toward homogeneity for mesenchymal markers and occurring earlier in IUGR than in controls. In vitro multipotency of IUGR-derived pMSCs was restricted because their capacity for adipocyte differentiation was increased, whereas their ability to differentiate toward endothelial cell lineagewasdecreased. Mitochondrial content and function were higher in IUGR pMSCs than controls, possibly indicating a shift from anaerobic to aerobic metabolism, with the loss of the metabolic characteristics that are typical of undifferentiated multipotent cells

    Stem Cell Tracking by Nanotechnologies

    Get PDF
    Advances in stem cell research have provided important understanding of the cell biology and offered great promise for developing new strategies for tissue regeneration. The beneficial effects of stem cell therapy depend also by the development of new approachs for the track of stem cells in living subjects over time after transplantation. Recent developments in the use of nanotechnologies have contributed to advance of the high-resolution in vivo imaging methods, including positron emission tomography (PET), single-photon emission tomography (SPECT), magnetic resonance (MR) imaging, and X-Ray computed microtomography (microCT). This review examines the use of nanotechnologies for stem cell tracking

    Temporal Comparison of PBDEs, OH-PBDEs, PCBs, and OH-PCBs in the Serum of Second Trimester Pregnant Women Recruited from San Francisco General Hospital, California

    Full text link
    Prenatal exposures to polybrominated diphenyl ethers (PBDEs) can harm neurodevelopment in humans and animals. In 2003–2004, PentaBDE and OctaBDE were banned in California and phased-out of US production; resulting impacts on human exposures are unknown. We previously reported that median serum concentrations of PBDEs and their metabolites (OH-PBDEs) among second trimester pregnant women recruited from San Francisco General Hospital (2008–2009; n=25) were the highest among pregnant women worldwide. We recruited another cohort from the same clinic in 2011–2012 (n=36) and now compare serum concentrations of PBDEs, OH-PBDEs, polychlorinated biphenyl ethers (PCBs) (structurally similar compounds banned in 1979), and OH-PCBs between two demographically similar cohorts. Between 2008–2009 and 2011–2012, adjusted least square geometric mean (LSGM) concentrations of ΣPBDEs decreased 65% (95% CI: 18, 130) from 90.0 ng/g lipid (95% CI: 64.7,125.2) to 54.6 ng/g lipid (95% CI: 39.2, 76.2) (p=0.004); Σ OH-PBDEs decreased six-fold (p<0.0001); and BDE-47, -99, and -100 declined more than BDE-153. There was a modest, non-significant (p=0.13) decline in LSGM concentrations of ΣPCBs and minimal differences in ΣOH-PCBs between 2008–2009 and 2011–2012. PBDE exposures are likely declining due to regulatory action, but the relative stability in PCB exposures suggests PBDE exposures may eventually plateau and persist for decades
    • …
    corecore