283 research outputs found

    Convenient synthesis of the 2,5-di-substituted 1,3,4- oxadiazole derivatives under microwave

    Get PDF
    ABSTRACT We have reported some novel 1,3,4-oxadiazole synthesized by conventional method as well as microwave assisted method. The reaction of different substituted cinnamic acid 2a-o with 2-(4-chlorophenyl) acetohydrazide by using phosphoric anhydride as catalyst, yielded a series of 2,5-disubstituted 1,3,4-oxadiazole 6a-o. The structures of all synthesized compounds are well characterized by Mass, FT-IR, 1 H NMR, 13 C NMR and elemental analysis. After obtaining experimental data regarding the yield and the time taken for the synthesis by both the methods, conventional and microwave assisted method, it was proved that the microwave assisted method is convenient for synthesis of this type of 2,5-di-substituted 1,3,4-oxadiazole 6a-o

    Geasters in the Western Ghats and west coast of India

    Get PDF
    Inventory in different locations of the Western Ghats and west coast of India during 2011–2013 yielded six species of geasters (Geastrum fimbriatum, G. lageniforme, G. pseudostriatum, G. saccatum, G. schweinitzii and G. triplex). Based on fresh basidiomata, illustrations of geasters are presented with macroscopic and microscopic observations. Fruit bodies of G. lageniforme were gregarious and abundant followed by G. triplex, while G. pseudostriatum were rare and solitary. Among the geasters, G. triplex was ectomycorrhizal with native tree Terminalia paniculata of the west coast. Geastrum fimbriatum, G. pseudostriatum and G. schweinitzii constitute the first record for the Western Ghats of India. Distribution, substrate preference, ectomycorrhizal features, economic value and conservation of geasters are discussed

    The Sarin-like Organophosphorus Agent bis(isopropyl methyl)phosphonate Induces Apoptotic Cell Death and COX-2 Expression in SK-N-SH Cells

    Get PDF
    Organophosphorus compounds, such as sarin, are highly toxic nerve agents that inhibit acetylcholinesterase (AChE), but not cholinesterase, via multiple mechanisms. Recent studies have shown that organophosphorus compounds increase cyclooxygenase-2 (COX-2) expression and induce neurotoxicity. In this study, we examined the toxicity of the sarin-like organophosphorus agent bis(isopropyl methyl)phosphonate (BIMP) and the effects of BIMP on COX-2 expression in SK-N-SH human neuroblastoma cells. Exposure to BIMP changed cell morphology and induced caspase-dependent apoptotic cell death accompanied by cleavage of caspase 3, caspase 9, and poly (ADP-ribose) polymerase (PARP). It also increased COX-2 expression, while pretreatment with a COX inhibitor, ibuprofen, decreased BIMP-dependent cell death and COX-2 expression in SK-N-SH cells. Thus, our findings suggest that BIMP induces apoptotic cell death and upregulates COX-2 expression

    コミュニケーション能力と規範意識を育む小学校における学級活動

    Get PDF
    本稿は,生徒指導の最終目的である「社会的なリテラシーの育成」を念頭に置き,コミュニケー ション能力や規範意識を高めるための学級活動を通して,社会をよりよくする子どもを育成することを目指した実践研究報告である。6年生を対象とし,よりよい集団の形成と同時進行で規範意識を育むために生活目標である「時間を大切にしよう」の行動目標を決定する話合い活動を実施し,児童の記述データをもとに考察した。その結果,この活動が児童のコミュニケーション能力や規範意識を高 めることができる機会となり得ることが示唆された。さらに,児童自身が自己理解を深め,次の課題に他者と協働しながら取り組んでいこうという意欲を高めるためには,話合い活動の振り返りや継続的に取り組むための工夫,家庭との連携が今後の課題であると考える。This paper is a practical research paper aiming to foster children who can contribute to better society through classroom activities to enhance their communication skills and norm awareness. The pupils of the sixth grader were targeted. We settled specific action goals after discussion to achieve "Let\u27s use the time effectively!", which was one of our classroom targets. We considered them with the pupils\u27 descriptive data. As a result, it showed that this activity could be opportunities that enhanced the pupils\u27 communication skills and norm awareness. To deepen pupils\u27 self-understanding and enhance the motivation to collaborate with others and work on the next problems, the feedback of the pupils\u27 discussion, some ideas to work on continuously and the collaboration with families will be challenged for the future

    Autopsy Findings Involving Murderous Intent: Comparison between Positive and Negative Murderous Intent Cases in Japan

    Get PDF
    The presence or absence of murderous intent is an important fact during criminal trials. To verify autopsy findings that were considered as evidence of murderous intent, we compared autopsy findings in homicide cases committed with and without murderous intent (n = 12 and n = 11, respectively). Although the number of wounds may only be limited to one or two, stab wounds on the trunk of the body from a sharp instrument can be a significant evidence of murderous intent. Bruise or petechial haemorrhage at the back or limbs caused by blunt instruments or without any weapons do not indicate the presence of murderous intent. Although results in this study should be carefully interpreted in other jurisdictions, statistical analysis comparing cases with and without murderous intents might be a valuable methodology to understand autopsy findings involving murderous intent in Japan

    Computer Simulation and Field Experiment for Downlink Multiuser MIMO in Mobile WiMAX System

    Get PDF
    The transmission performance for a downlink mobile WiMAX system with multiuser multiple-input multiple-output (MU-MIMO) systems in a computer simulation and field experiment is described. In computer simulation, a MU-MIMO transmission system can be realized by using the block diagonalization (BD) algorithm, and each user can receive signals without any signal interference from other users. The bit error rate (BER) performance and channel capacity in accordance with modulation schemes and the number of streams were simulated in a spatially correlated multipath fading environment. Furthermore, we propose a method for evaluating the transmission performance for this downlink mobile WiMAX system in this environment by using the computer simulation. In the field experiment, the received power and downlink throughput in the UDP layer were measured on an experimental mobile WiMAX system developed in Azumino City in Japan. In comparison with the simulated and experimented results, the measured maximum throughput performance in the downlink had almost the same performance as the simulated throughput. It was confirmed that the experimental mobile WiMAX system for MU-MIMO transmission successfully increased the total channel capacity of the system

    Chromogenic and Fluorogenic Probes for the Detection of Illicit Drugs

    Full text link
    [EN] The consumption of illicit drugs has increased exponentially in recent years and has become a problem that worries both governments and international institutions. The rapid emergence of new compounds, their easy access, the low levels at which these substances are able to produce an effect, and their short time of permanence in the organism make it necessary to develop highly rapid, easy, sensitive, and selective methods for their detection. Currently, the most widely used methods for drug detection are based on techniques that require large measurement times, the use of sophisticated equipment, and qualified personnel. Chromo- and fluorogenic methods are an alternative to those classical procedures.We thank the Spanish Government [projects MAT2015-64139-C4-1-R and AGL2015-70235-C2-2-R (MINECO/FEDER)] and the Generalitat Valenciana (project PROMETEOII/2014/047) for support. S.E.S thanks the Ministerio de Economia y Competitividad for his Juan de la Cierva contract. B.L.T and E.G. thank the Spanish Government for their predoctoral grants. L.P. also thanks the Universitat Politecnica de Valencia for his predoctoral grant.Garrido-García, EM.; Pla, L.; Lozano-Torres, B.; El Sayed Shehata Nasr, S.; Martínez-Máñez, R.; Sancenón Galarza, F. (2018). Chromogenic and Fluorogenic Probes for the Detection of Illicit Drugs. ChemistryOpen. 7(5):401-428. https://doi.org/10.1002/open.201800034S40142875Komoroski, E. M., Komoroski, R. A., Valentine, J. L., Pearce, J. M., & Kearns, G. L. (2000). The Use of Nuclear Magnetic Resonance Spectroscopy in the Detection of Drug Intoxication. Journal of Analytical Toxicology, 24(3), 180-187. doi:10.1093/jat/24.3.180Drugs of Abuse: A DEA Resource Guide 2017World Drug Report 2017European Drug Report: Trends and Developments 2017Namera, A., Nakamoto, A., Saito, T., & Nagao, M. (2011). Colorimetric detection and chromatographic analyses of designer drugs in biological materials: a comprehensive review. Forensic Toxicology, 29(1), 1-24. doi:10.1007/s11419-010-0107-9Namera, A., Kawamura, M., Nakamoto, A., Saito, T., & Nagao, M. (2015). Comprehensive review of the detection methods for synthetic cannabinoids and cathinones. Forensic Toxicology, 33(2), 175-194. doi:10.1007/s11419-015-0270-0Kidwell, D. A., Holland, J. C., & Athanaselis, S. (1998). Testing for drugs of abuse in saliva and sweat. Journal of Chromatography B: Biomedical Sciences and Applications, 713(1), 111-135. doi:10.1016/s0378-4347(97)00572-0Cappelle, D., De Doncker, M., Gys, C., Krysiak, K., De Keukeleire, S., Maho, W., … Neels, H. (2017). A straightforward, validated liquid chromatography coupled to tandem mass spectrometry method for the simultaneous detection of nine drugs of abuse and their metabolites in hair and nails. Analytica Chimica Acta, 960, 101-109. doi:10.1016/j.aca.2017.01.022Koster, R. A., Alffenaar, J.-W. C., Greijdanus, B., VanDerNagel, J. E. L., & Uges, D. R. A. (2014). Fast and Highly Selective LC-MS/MS Screening for THC and 16 Other Abused Drugs and Metabolites in Human Hair to Monitor Patients for Drug Abuse. Therapeutic Drug Monitoring, 36(2), 234-243. doi:10.1097/ftd.0b013e3182a377e8Li, Y., Uddayasankar, U., He, B., Wang, P., & Qin, L. (2017). Fast, Sensitive, and Quantitative Point-of-Care Platform for the Assessment of Drugs of Abuse in Urine, Serum, and Whole Blood. Analytical Chemistry, 89(16), 8273-8281. doi:10.1021/acs.analchem.7b01288De la Asunción-Nadal, V., Armenta, S., Garrigues, S., & de la Guardia, M. (2017). Identification and determination of synthetic cannabinoids in herbal products by dry film attenuated total reflectance-infrared spectroscopy. Talanta, 167, 344-351. doi:10.1016/j.talanta.2017.02.026Risoluti, R., Materazzi, S., Gregori, A., & Ripani, L. (2016). Early detection of emerging street drugs by near infrared spectroscopy and chemometrics. Talanta, 153, 407-413. doi:10.1016/j.talanta.2016.02.044Andreou, C., Hoonejani, M. R., Barmi, M. R., Moskovits, M., & Meinhart, C. D. (2013). Rapid Detection of Drugs of Abuse in Saliva Using Surface Enhanced Raman Spectroscopy and Microfluidics. ACS Nano, 7(8), 7157-7164. doi:10.1021/nn402563fHe, S., Liu, D., Wang, Z., Cai, K., & Jiang, X. (2011). Utilization of unmodified gold nanoparticles in colorimetric detection. Science China Physics, Mechanics and Astronomy, 54(10), 1757-1765. doi:10.1007/s11433-011-4486-7Substance Abuse (Depressants or Sedative-Hypnotic Drugs) 2014Zhai, D., Agrawalla, B. K., Eng, P. S. F., Lee, S.-C., Xu, W., & Chang, Y.-T. (2013). Development of a fluorescent sensor for an illicit date rape drug – GBL. Chemical Communications, 49(55), 6170. doi:10.1039/c3cc43153cZhai, D., Tan, Y. Q. E., Xu, W., & Chang, Y.-T. (2014). Development of a fluorescent sensor for illicit date rape drug GHB. Chemical Communications, 50(22), 2904. doi:10.1039/c3cc49603aBaumes, L. A., Buaki Sogo, M., Montes-Navajas, P., Corma, A., & Garcia, H. (2010). A Colorimetric Sensor Array for the Detection of the Date-Rape Drug γ-Hydroxybutyric Acid (GHB): A Supramolecular Approach. Chemistry - A European Journal, 16(15), 4489-4495. doi:10.1002/chem.200903127Wang, W., Dong, Z.-Z., Yang, G., Leung, C.-H., Lin, S., & Ma, D.-L. (2017). A long-lived iridium(iii) chemosensor for the real-time detection of GHB. Journal of Materials Chemistry B, 5(15), 2739-2742. doi:10.1039/c6tb03396bMorris, J. A. (2007). Modified Cobalt Thiocyanate Presumptive Color Test for Ketamine Hydrochloride. Journal of Forensic Sciences, 52(1), 84-87. doi:10.1111/j.1556-4029.2006.00331.xMerck Manual Drug Information 2014Argente-García, A., Jornet-Martínez, N., Herráez-Hernández, R., & Campíns-Falcó, P. (2017). A passive solid sensor for in-situ colorimetric estimation of the presence of ketamine in illicit drug samples. Sensors and Actuators B: Chemical, 253, 1137-1144. doi:10.1016/j.snb.2017.07.183ELMOSALLAMY, M. A. F., & AMIN, A. S. (2014). New Potentiometric and Spectrophotometric Methods for the Determination of Dextromethorphan in Pharmaceutical Preparations. Analytical Sciences, 30(3), 419-425. doi:10.2116/analsci.30.419Mohseni, N., & Bahram, M. (2016). Mean centering of ratio spectra for colorimetric determination of morphine and codeine in pharmaceuticals and biological samples using melamine modified gold nanoparticles. Anal. Methods, 8(37), 6739-6747. doi:10.1039/c6ay02091gSAKAI, T., & OHNO, N. (1986). Spectrophotometric determination of stimulant drugs in urine by color reaction with tetrabromophenolphthalein ethyl ester. Analytical Sciences, 2(3), 275-279. doi:10.2116/analsci.2.275Sakai, T., & Ohno, N. (1987). Improved determination of methamphetamine, ephedrine and methylephedrine in urine by extraction-thermospectrometry. The Analyst, 112(2), 149. doi:10.1039/an9871200149Argente-García, A., Jornet-Martínez, N., Herráez-Hernández, R., & Campíns-Falcó, P. (2016). A solid colorimetric sensor for the analysis of amphetamine-like street samples. Analytica Chimica Acta, 943, 123-130. doi:10.1016/j.aca.2016.09.020Guler, E., Yilmaz Sengel, T., Gumus, Z. P., Arslan, M., Coskunol, H., Timur, S., & Yagci, Y. (2017). Mobile Phone Sensing of Cocaine in a Lateral Flow Assay Combined with a Biomimetic Material. Analytical Chemistry, 89(18), 9629-9632. doi:10.1021/acs.analchem.7b03017Choodum, A., Parabun, K., Klawach, N., Daeid, N. N., Kanatharana, P., & Wongniramaikul, W. (2014). Real time quantitative colourimetric test for methamphetamine detection using digital and mobile phone technology. Forensic Science International, 235, 8-13. doi:10.1016/j.forsciint.2013.11.018Choodum, A., Kanatharana, P., Wongniramaikul, W., & NicDaeid, N. (2015). A sol–gel colorimetric sensor for methamphetamine detection. Sensors and Actuators B: Chemical, 215, 553-560. doi:10.1016/j.snb.2015.03.089Moreno, D., Greñu, B. D. de, García, B., Ibeas, S., & Torroba, T. (2012). A turn-on fluorogenic probe for detection of MDMA from ecstasy tablets. Chemical Communications, 48(24), 2994. doi:10.1039/c2cc17823kFu, Y., Shi, L., Zhu, D., He, C., Wen, D., He, Q., … Cheng, J. (2013). Fluorene–thiophene-based thin-film fluorescent chemosensor for methamphetamine vapor by thiophene–amine interaction. Sensors and Actuators B: Chemical, 180, 2-7. doi:10.1016/j.snb.2011.10.031He, M., Peng, H., Wang, G., Chang, X., Miao, R., Wang, W., & Fang, Y. (2016). Fabrication of a new fluorescent film and its superior sensing performance to N-methamphetamine in vapor phase. Sensors and Actuators B: Chemical, 227, 255-262. doi:10.1016/j.snb.2015.12.048Lozano-Torres, B., Pascual, L., Bernardos, A., Marcos, M. D., Jeppesen, J. O., Salinas, Y., … Sancenón, F. (2017). Pseudorotaxane capped mesoporous silica nanoparticles for 3,4-methylenedioxymethamphetamine (MDMA) detection in water. Chemical Communications, 53(25), 3559-3562. doi:10.1039/c7cc00186jHe, C., He, Q., Deng, C., Shi, L., Fu, Y., Cao, H., & Cheng, J. (2011). Determination of Methamphetamine Hydrochloride by highly fluorescent polyfluorene with NH2-terminated side chains. Synthetic Metals, 161(3-4), 293-297. doi:10.1016/j.synthmet.2010.11.038Masseroni, D., Biavardi, E., Genovese, D., Rampazzo, E., Prodi, L., & Dalcanale, E. (2015). A fluorescent probe for ecstasy. Chemical Communications, 51(64), 12799-12802. doi:10.1039/c5cc04760aReviriego, F., Navarro, P., García-España, E., Albelda, M. T., Frías, J. C., Domènech, A., … Ortí, E. (2008). Diazatetraester 1H-Pyrazole Crowns as Fluorescent Chemosensors for AMPH, METH, MDMA (Ecstasy), and Dopamine. Organic Letters, 10(22), 5099-5102. doi:10.1021/ol801732tYamada, H., Ikeda-Wada, S., & Oguri, K. (1999). Highly Specific and Convenient Color Reaction for Methylenedioxymethamphetamine and Related Drugs Using Chromotropic Acid. Application as a Drug Screening Test. JOURNAL OF HEALTH SCIENCE, 45(6), 303-308. doi:10.1248/jhs.45.303Matsuda, K., Fukuzawa, T., Ishii, Y., & Yamada, H. (2007). Color reaction of 3,4-methylenedioxyamphetamines with chromotropic acid: its improvement and application to the screening of seized tablets. Forensic Toxicology, 25(1), 37-40. doi:10.1007/s11419-007-0022-xRouhani, S., & Haghgoo, S. (2015). A novel fluorescence nanosensor based on 1,8-naphthalimide-thiophene doped silica nanoparticles, and its application to the determination of methamphetamine. Sensors and Actuators B: Chemical, 209, 957-965. doi:10.1016/j.snb.2014.12.035Maue, M., & Schrader, T. (2005). A Color Sensor for Catecholamines. Angewandte Chemie International Edition, 44(15), 2265-2270. doi:10.1002/anie.200462702Maue, M., & Schrader, T. (2005). A Color Sensor for Catecholamines. Angewandte Chemie, 117(15), 2305-2310. doi:10.1002/ange.200462702Mosnaim, A. D., & Inwang, E. E. (1973). A spectrophotometric method for the quantification of 2-phenylethylamine in biological specimens. Analytical Biochemistry, 54(2), 561-577. doi:10.1016/0003-2697(73)90388-6Wang, D., Liu, T.-J., Zhang, W.-C., Zhang, W.-C., Slaven IV, W. T., & Li, C.-J. (1998). Enantiomeric discrimination of chiral amines with new fluorescent chemosensors. Chemical Communications, (16), 1747-1748. doi:10.1039/a802855iEl-Didamony, A. M., & Gouda, A. A. (2010). A novel spectrofluorimetric method for the assay of pseudoephedrine hydrochloride in pharmaceutical formulations via derivatization with 4-chloro-7-nitrobenzofurazan. Luminescence, 26(6), 510-517. doi:10.1002/bio.1261Mazina, J., Aleksejev, V., Ivkina, T., Kaljurand, M., & Poryvkina, L. (2012). Qualitative detection of illegal drugs (cocaine, heroin and MDMA) in seized street samples based on SFS data and ANN: validation of method. Journal of Chemometrics, 26(8-9), 442-455. doi:10.1002/cem.2462Sefah, K., Shangguan, D., Xiong, X., O’Donoghue, M. B., & Tan, W. (2010). Development of DNA aptamers using Cell-SELEX. Nature Protocols, 5(6), 1169-1185. doi:10.1038/nprot.2010.66Shi, Q., Shi, Y., Pan, Y., Yue, Z., Zhang, H., & Yi, C. (2014). Colorimetric and bare eye determination of urinary methylamphetamine based on the use of aptamers and the salt-induced aggregation of unmodified gold nanoparticles. Microchimica Acta, 182(3-4), 505-511. doi:10.1007/s00604-014-1349-8Mao, K., Yang, Z., Du, P., Xu, Z., Wang, Z., & Li, X. (2016). G-quadruplex–hemin DNAzyme molecular beacon probe for the detection of methamphetamine. RSC Advances, 6(67), 62754-62759. doi:10.1039/c6ra04912eShlyahovsky, B., Li, D., Weizmann, Y., Nowarski, R., Kotler, M., & Willner, I. (2007). Spotlighting of Cocaine by an Autonomous Aptamer-Based Machine. Journal of the American Chemical Society, 129(13), 3814-3815. doi:10.1021/ja069291nWang, F., Freage, L., Orbach, R., & Willner, I. (2013). Autonomous Replication of Nucleic Acids by Polymerization/Nicking Enzyme/DNAzyme Cascades for the Amplified Detection of DNA and the Aptamer–Cocaine Complex. Analytical Chemistry, 85(17), 8196-8203. doi:10.1021/ac4013094Wang, J., Song, J., Wang, X., Wu, S., Zhao, Y., Luo, P., & Meng, C. (2016). An ATMND/SGI based label-free and fluorescence ratiometric aptasensor for rapid and highly sensitive detection of cocaine in biofluids. Talanta, 161, 437-442. doi:10.1016/j.talanta.2016.08.039Huang, J., Chen, Y., Yang, L., Zhu, Z., Zhu, G., Yang, X., … Tan, W. (2011). Amplified detection of cocaine based on strand-displacement polymerization and fluorescence resonance energy transfer. Biosensors and Bioelectronics, 28(1), 450-453. doi:10.1016/j.bios.2011.05.038Zhang, C., & Johnson, L. W. (2009). Single Quantum-Dot-Based Aptameric Nanosensor for Cocaine. Analytical Chemistry, 81(8), 3051-3055. doi:10.1021/ac802737bEmrani, A. S., Danesh, N. M., Ramezani, M., Taghdisi, S. M., & Abnous, K. (2016). A novel fluorescent aptasensor based on hairpin structure of complementary strand of aptamer and nanoparticles as a signal amplification approach for ultrasensitive detection of cocaine. Biosensors and Bioelectronics, 79, 288-293. doi:10.1016/j.bios.2015.12.025Roncancio, D., Yu, H., Xu, X., Wu, S., Liu, R., Debord, J., … Xiao, Y. (2014). A Label-Free Aptamer-Fluorophore Assembly for Rapid and Specific Detection of Cocaine in Biofluids. Analytical Chemistry, 86(22), 11100-11106. doi:10.1021/ac503360nGuler, E., Bozokalfa, G., Demir, B., Gumus, Z. P., Guler, B., Aldemir, E., … Coskunol, H. (2016). An aptamer folding-based sensory platform decorated with nanoparticles for simple cocaine testing. Drug Testing and Analysis, 9(4), 578-587. doi:10.1002/dta.1992Ribes, À., Xifré -Pérez, E., Aznar, E., Sancenón, F., Pardo, T., Marsal, L. F., & Martínez-Máñez, R. (2016). Molecular gated nanoporous anodic alumina for the detection of cocaine. Scientific Reports, 6(1). doi:10.1038/srep38649Marsal, L. F., Vojkuvka, L., Formentin, P., Pallarés, J., & Ferré-Borrull, J. (2009). Fabrication and optical characterization of nanoporous alumina films annealed at different temperatures. Optical Materials, 31(6), 860-864. doi:10.1016/j.optmat.2008.09.008Oroval, M., Coronado-Puchau, M., Langer, J., Sanz-Ortiz, M. N., Ribes, Á., Aznar, E., … Martínez-Máñez, R. (2016). Surface Enhanced Raman Scattering and Gated Materials for Sensing Applications: The Ultrasensitive Detection ofMycoplasmaand Cocaine. Chemistry - A European Journal, 22(38), 13488-13495. doi:10.1002/chem.201602457Stojanovic, M. N., de Prada, P., & Landry, D. W. (2000). Fluorescent Sensors Based on Aptamer Self-Assembly. Journal of the American Chemical Society, 122(46), 11547-11548. doi:10.1021/ja0022223Stojanovic, M. N., de Prada, P., & Landry, D. W. (2001). Aptamer-Based Folding Fluorescent Sensor for Cocaine. Journal of the American Chemical Society, 123(21), 4928-4931. doi:10.1021/ja0038171Stojanovic, M. N., & Landry, D. W. (2002). Aptamer-Based Colorimetric Probe for Cocaine. Journal of the American Chemical Society, 124(33), 9678-9679. doi:10.1021/ja0259483Liu, Y., & Zhao, Q. (2017). Direct fluorescence anisotropy assay for cocaine using tetramethylrhodamine-labeled aptamer. Analytical and Bioanalytical Chemistry, 409(16), 3993-4000. doi:10.1007/s00216-017-0349-zZhou, Z., Du, Y., & Dong, S. (2011). Double-Strand DNA-Templated Formation of Copper Nanoparticles as Fluorescent Probe for Label-Free Aptamer Sensor. Analytical Chemistry, 83(13), 5122-5127. doi:10.1021/ac200120gShi, Y., Dai, H., Sun, Y., Hu, J., Ni, P., & Li, Z. (2013). Fluorescent sensing of cocaine based on a structure switching aptamer, gold nanoparticles and graphene oxide. The Analyst, 138(23), 7152. doi:10.1039/c3an00897eZhang, Y., Sun, Z., Tang, L., Zhang, H., & Zhang, G.-J. (2016). Aptamer based fluorescent cocaine assay based on the use of graphene oxide and exonuclease III-assisted signal amplification. Microchimica Acta, 183(10), 2791-2797. doi:10.1007/s00604-016-1923-3Zhang, J., Wang, L., Pan, D., Song, S., Boey, F. Y. C., Zhang, H., & Fan, C. (2008). Visual Cocaine Detection with Gold Nanoparticles and Rationally Engineered Aptamer Structures. Small, 4(8), 1196-1200. doi:10.1002/smll.200800057Li, Y., Ji, X., & Liu, B. (2011). Chemiluminescence aptasensor for cocaine based on double-functionalized gold nanoprobes and functionalized magnetic microbeads. Analytical and Bioanalytical Chemistry, 401(1), 213-219. doi:10.1007/s00216-011-5064-6Zou, R., Lou, X., Ou, H., Zhang, Y., Wang, W., Yuan, M., … Liu, Y. (2012). Highly specific triple-fragment aptamer for optical detection of cocaine. RSC Advances, 2(11), 4636. doi:10.1039/c2ra20307cZhang, S., Wang, L., Liu, M., Qiu, Y., Wang, M., Liu, X., … Yu, R. (2016). A novel, label-free fluorescent aptasensor for cocaine detection based on a G-quadruplex and ruthenium polypyridyl complex molecular light switch. Analytical Methods, 8(18), 3740-3746. doi:10.1039/c6ay00231eTang, Y., Long, F., Gu, C., Wang, C., Han, S., & He, M. (2016). Reusable split-aptamer-based biosensor for rapid detection of cocaine in serum by using an all-fiber evanescent wave optical biosensing platform. Analytica Chimica Acta, 933, 182-188. doi:10.1016/j.aca.2016.05.021Wang, L., Musile, G., & McCord, B. R. (2017). An aptamer-based paper microfluidic device for the colorimetric determination of cocaine. ELECTROPHORESIS, 39(3), 470-475. doi:10.1002/elps.201700254Liu, J., & Lu, Y. (2006). Fast Colorimetric Sensing of Adenosine and Cocaine Based on a General Sensor Design Involving Aptamers and Nanoparticles. Angewandte Chemie International Edition, 45(1), 90-94. doi:10.1002/anie.200502589Liu, J., & Lu, Y. (2006). Fast Colorimetric Sensing of Adenosine and Cocaine Based on a General Sensor Design Involving Aptamers and Nanoparticles. Angewandte Chemie, 118(1), 96-100. doi:10.1002/ange.200502589He, M., Li, Z., Ge, Y., & Liu, Z. (2016). Portable Upconversion Nanoparticles-Based Paper Device for Field Testing of Drug Abuse. Analytical Chemistry, 88(3), 1530-1534. doi:10.1021/acs.analchem.5b04863Qiu, L., Zhou, H., Zhu, W., Qiu, L., Jiang, J., Shen, G., & Yu, R. (2013). A novel label-free fluorescence aptamer-based sensor method for cocaine detection based on isothermal circular strand-displacement amplification and graphene oxide absorption. New Journal of Chemistry, 37(12), 3998. doi:10.1039/c3nj00594aArslan, M., Yilmaz Sengel, T., Guler, E., Gumus, Z. P., Aldemir, E., Akbulut, H., … Yagci, Y. (2017). Double fluorescence assay via a β-cyclodextrin containing conjugated polymer as a biomimetic material for cocaine sensing. Polymer Chemistry, 8(21), 3333-3340. doi:10.1039/c7py00420fMao, K., Yang, Z., Li, J., Zhou, X., Li, X., & Hu, J. (2017). A novel colorimetric biosensor based on non-aggregated Au@Ag core–shell nanoparticles for methamphetamine and cocaine detection. Talanta, 175, 338-346. doi:10.1016/j.talanta.2017.07.011Ma, D.-L., Wang, M., He, B., Yang, C., Wang, W., & Leung, C.-H. (2015). A Luminescent Cocaine Detection Platform Using a Split G-Quadruplex-Selective Iridium(III) Complex and a Three-Way DNA Junction Architecture. ACS Applied Materials & Interfaces, 7(34), 19060-19067. doi:10.1021/acsami.5b05861Du, Y., Li, B., Guo, S., Zhou, Z., Zhou, M., Wang, E., & Dong, S. (2011). G-Quadruplex-based DNAzyme for colorimetric detection ofcocaine: Using magnetic nanoparticles as the separation and amplification element. The Analyst, 136(3), 493-497. doi:10.1039/c0an00557fZhang, K., Wang, K., Zhu, X., Zhang, J., Xu, L., Huang, B., & Xie, M. (2014). Label-free and ultrasensitive fluorescence detection of cocaine based on a strategy that utilizes DNA-templated silver nanoclusters and the nicking endonuclease-assisted signal amplification method. Chem. Commun., 50(2), 180-182. doi:10.1039/c3cc47418fZhou, J., Ellis, A. V., Kobus, H., & Voelcker, N. H. (2012). Aptamer sensor for cocaine using minor groove binder based energy transfer. Analytica Chimica Acta, 719, 76-81. doi:10.1016/j.aca.2012.01.011Drug Facts 2016Baudot, P., & Andre, J.-C. (1983). A Low-Cost Differential Fluorimeter for the Detection and Determination of LSD in Illicit Preparations. Journal of Analytical Toxicology, 7(2), 69-71. doi:10.1093/jat/7.2.69Mohseni, N., Bahram, M., & Baheri, T. (2017). Chemical nose for discrimination of opioids based on unmodified gold nanoparticles. Sensors and Actuators B: Chemical, 250, 509-517. doi:10.1016/j.snb.2017.04.145Shcherbakova, E. G., Zhang, B., Gozem, S., Minami, T., Zavalij, P. Y., Pushina, M., … Anzenbacher, P. (2017). Supramolecular Sensors for Opiates and Their Metabolites. Journal of the American Chemical Society, 139(42), 14954-14960. doi:10.1021/jacs.7b0637

    Development and validation of an ultra?performance liquid chromatography quadrupole time of flight mass spectrometry method for rapid quantification of free amino acids in human urine

    Get PDF
    An ultra-performance liquid chromatography quadrupole time of flight mass spectrometry (UPLC-qTOFMS)method using hydrophilic interaction liquid chromatography was developed and validated for simultaneous quantification of 18 free amino acids in urine with a total acquisition time including the column re-equilibration of less than 18 min per sample. This method involves simple sample preparation steps which consisted of 15 times dilution with acetonitrile to give a final composition of 25 % aqueous and 75 % acetonitrile without the need of any derivatization. The dynamic range for our calibration curve is approximately two orders of magnitude (120-fold from the lowest calibration curve point) with good linearity (r2 ? 0.995 for all amino acids). Good separation of all amino acids as well as good intra- and inter-day accuracy (<15 %) and precision (<15 %) were observed using three quality control samples at a concentration of low, medium and high range of the calibration curve. The limits of detection (LOD) and lower limit of quantification of our method were ranging from approximately 1–300 nM and 0.01–0.5 µM, respectively. The stability of amino acids in the prepared urine samples was found to be stable for 72 h at 4 °C, after one freeze thaw cycle and for up to 4 weeks at ?80 °C. We have applied this method to quantify the content of 18 free amino acids in 646 urine samples from a dietary intervention study. We were able to quantify all 18 free amino acids in these urine samples, if they were present at a level above the LOD. We found our method to be reproducible (accuracy and precision were typically <10 % for QCL, QCM and QCH) and the relatively high sample throughput nature of this method potentially makes it a suitable alternative for the analysis of urine samples in clinical setting
    corecore