25 research outputs found

    Response of methanogenic microbial communities to desiccation stress in flooded and rain-fed paddy soil from Thailand

    Get PDF
    Rice paddies in central Thailand are flooded either by irrigation (irrigated rice) or by rain (rain-fed rice). The paddy soils and their microbial communities thus experience permanent or arbitrary submergence, respectively. Since methane production depends on anaerobic conditions, we hypothesized that structure and function of the methanogenic microbial communities are different in irrigated and rain-fed paddies and react differently upon desiccation stress. We determined rates and relative proportions of hydrogenotrophic and aceticlastic methanogenesis before and after short-term drying of soil samples from replicate fields. The methanogenic pathway was determined by analyzing concentrations and δ13C of organic carbon and of CH4 and CO2 produced in the presence and absence of methyl fluoride, an inhibitor of aceticlastic methanogenesis. We also determined the abundance (qPCR) of genes and transcripts of bacterial 16S rRNA, archaeal 16S rRNA and methanogenic mcrA (coding for a subunit of the methyl coenzyme M reductase) and the composition of these microbial communities by T-RFLP fingerprinting and/or Illumina deep sequencing. The abundances of genes and transcripts were similar in irrigated and rain-fed paddy soil. They also did not change much upon desiccation and rewetting, except the transcripts of mcrA, which increased by more than two orders of magnitude. In parallel, rates of CH4 production also increased, in rain-fed soil more than in irrigated soil. The contribution of hydrogenotrophic methanogenesis increased in rain-fed soil and became similar to that in irrigated soil. However, the relative microbial community composition on higher taxonomic levels was similar between irrigated and rain-fed soil. On the other hand, desiccation and subsequent anaerobic reincubation resulted in systematic changes in the composition of microbial communities for both Archaea and Bacteria. It is noteworthy that differences in the community composition were mostly detected on the level of operational taxonomic units (OTUs; 97% sequence similarity). The treatments resulted in change of the relative abundance of several archaeal OTUs. Some OTUs of Methanobacterium, Methanosaeta, Methanosarcina, Methanocella and Methanomassiliicoccus increased, while some of Methanolinea and Methanosaeta decreased. Bacterial OTUs within Firmicutes, Cyanobacteria, Planctomycetes and Deltaproteobacteria increased, while OTUs within other proteobacterial classes decreased

    Changing the Allocation Rules in the EU ETS: Impact on Competitiveness and Economic Efficiency

    Full text link

    Novel <i>GATA1</i> Variant Causing a Bleeding Phenotype Associated with Combined Platelet α-/δ-Storage Pool Deficiency and Mild Dyserythropoiesis Modified by a <i>SLC4A1</i> Variant

    No full text
    Germline defects in the transcription factor GATA1 are known to cause dyserythropoiesis with(out) anemia and variable abnormalities in platelet count and function. However, damaging variants closely located to the C-terminal zinc finger domain of GATA1 are nearly unknown. In this study, a 36-year-old male index patient and his 4-year-old daughter suffered from moderate mucocutaneous bleeding diathesis since birth. Whole exome sequencing detected a novel hemizygous GATA1 missense variant, c.886A>C p.T296P, located between the C-terminal zinc finger and the nuclear localization sequence with non-random X-chromosome inactivation in the heterozygous daughter. Blood smears from both patients demonstrated large platelet fractions and moderate thrombocytopenia in the index. Flow cytometry and electron microscopy analysis supported a combined α-/δ (AN-subtype)-storage pool deficiency as cause for impaired agonist-induced platelet aggregation (light transmission aggregometry) and granule exocytosis (flow cytometry). The absence of BCAM in the index (Lu(a-b-)) and its low expression in the daughter (Lu(a-b+)) confirmed a less obvious effect of defective GATA1 also on erythrocytes. Borderline anemia, elevated HbF levels, and differential transcription of GATA1-regulated genes indicated mild dyserythropoiesis in both patients. Furthermore, a mild SLC4A1 defect associated with a heterozygous SLC4A1 c.2210C>T p.A737V variant maternally transmitted in the daughter may modify the disease to mild spherocytosis and hemolysis

    Ercc1 Deficiency Promotes Tumorigenesis and Increases Cisplatin Sensitivity in a Tp53 Context-Specific Manner

    No full text
    KRAS-mutant lung adenocarcinoma is among the most common cancer entities and, in advanced stages, typically displays poor prognosis due to acquired resistance against chemotherapy, which is still largely based on cisplatin-containing combination regimens. Mechanisms of cisplatin resistance have been extensively investigated, and ERCC1 has emerged as a key player due to its central role in the repair of cisplatin-induced DNA lesions. However, clinical data have not unequivocally confirmed ERCC1 status as a predictor of the response to cisplatin treatment. Therefore, we employed an autochthonous mouse model of Kras-driven lung adenocarcinoma resembling human lung adenocarcinoma to investigate the role of Ercc1 in the response to cisplatin treatment. Our data show that Ercc1 deficiency in Tp53-deficient murine lung adenocarcinoma induces a more aggressive tumor phenotype that displays enhanced sensitivity to cisplatin treatment. Furthermore, tumors that relapsed after cisplatin treatment in our model develop a robust etoposide sensitivity that is independent of the Ercc1 status and depends solely on previous cisplatin exposure. Our results provide a solid rationale for further investigation of the possibility of preselection of lung adenocarcinoma patients according to the functional ERCC1- and mutational TP53 status, where functionally ERCC1-incompetent patients might benefit from sequential cisplatin and etoposide chemotherapy. (C)2016 AACR
    corecore