379 research outputs found
Transport through an impurity tunnel coupled to a Si/SiGe quantum dot
Achieving controllable coupling of dopants in silicon is crucial for
operating donor-based qubit devices, but it is difficult because of the small
size of donor-bound electron wavefunctions. Here we report the characterization
of a quantum dot coupled to a localized electronic state, and we present
evidence of controllable coupling between the quantum dot and the localized
state. A set of measurements of transport through this device enable the
determination of the most likely location of the localized state, consistent
with an electronically active impurity in the quantum well near the edge of the
quantum dot. The experiments we report are consistent with a gate-voltage
controllable tunnel coupling, which is an important building block for hybrid
donor and gate-defined quantum dot devices.Comment: 5 pages, 3 figure
Carbon release by selective alloying of transition metal carbides
We have performed first principles density functional theory calculations on
TiC alloyed on the Ti sublattice with 3d transition metals ranging from Sc to
Zn. The theory is accompanied with experimental investigations, both as regards
materials synthesis as well as characterization. Our results show that by
dissolving a metal with a weak ability to form carbides, the stability of the
alloy is lowered and a driving force for the release of carbon from the carbide
is created. During thin film growth of a metal carbide this effect will favor
the formation of a nanocomposite with carbide grains in a carbon matrix. The
choice of alloying elements as well as their concentrations will affect the
relative amount of carbon in the carbide and in the carbon matrix. This can be
used to design the structure of nanocomposites and their physical and chemical
properties. One example of applications is as low-friction coatings. Of the
materials studied, we suggest the late 3d transition metals as the most
promising elements for this phenomenon, at least when alloying with TiC.Comment: 9 pages, 6 figure
Scanned Probe Microscopy of Electronic Transport in Carbon Nanotubes
We use electrostatic force microscopy and scanned gate microscopy to probe
the conducting properties of carbon nanotubes at room temperature. Multi-walled
carbon nanotubes are shown to be diffusive conductors, while metallic
single-walled carbon nanotubes are ballistic conductors over micron lengths.
Semiconducting single-walled carbon nanotubes are shown to have a series of
large barriers to conduction along their length. These measurements are also
used to probe the contact resistance and locate breaks in carbon nanotube
circuits.Comment: 4 page
Impurity Entanglement in the Quantum Spin Chain
The contribution to the entanglement of an impurity attached to one end of a
quantum spin chain (S=1/2) is studied. Two different measures of
the impurity contribution to the entanglement have been proposed: the
impurity-entanglement-entropy S_{imp} and the negativity N. The first, S_{imp},
is based on a subtractive procedure where the entanglement-entropy in the
absence of the impurity is subtracted from results with the impurity present.
The other, N, is the negativity of a part of the system separated from the
impurity and the impurity itself. In this paper we compare the two measures and
discuss similarities and differences between them. In the model
it is possible to perform very precise variational calculations close to the
Majumdar-Ghosh-point (J_2 = J / 2 and \delta = 0) where the system is gapped
with a two-fold degenerate dimerized ground-state. We describe in detail how
such calculations are done and how they can be used to calculate N as well as
S_{imp} for any impurity-coupling J_K. We then study the complete cross-over in
the impurity entanglement as J_K is varied between 0 and 1 close to the
Majumdar-Ghosh-point. In particular we study the impurity entanglement when a
staggered nearest-neighbour-interaction proportional to is introduced.
In this case, the two-fold degeneracy of the ground-state is lifted leading to
a very rapid reduction in the impurity entanglement as is increased.Comment: 24 pages, 25 figures, typos corrected, one figure added and minor
revisions of text performe
Experimental infection in calves with a specific subtype of verocytotoxin-producing Escherichia coli O157:H7 of bovine origin
<p>Abstract</p> <p>Background</p> <p>In Sweden, a particular subtype of verocytotoxin-producing <it>Escherichia coli </it>(VTEC) O157:H7, originally defined as being of phage type 4, and carrying two <it>vtx</it><sub>2 </sub>genes, has been found to cause the majority of reported human infections during the past 15 years, including both sporadic cases and outbreaks. One plausible explanation for this could be that this particular subtype is better adapted to colonise cattle, and thereby may be excreted in greater concentrations and for longer periods than other VTEC O157:H7 subtypes.</p> <p>Methods</p> <p>In an experimental study, 4 calves were inoculated with 10<sup>9 </sup>colony forming units (cfu) of strain CCUG 53931, representative of the subtype VTEC O157:H7 (PT4;<it>vtx</it><sub>2</sub>;<it>vtx</it><sub>2c</sub>). Two un-inoculated calves were co-housed with the inoculated calves. Initially, the VTEC O157:H7 strain had been isolated from a dairy herd with naturally occurring infection and the farm had previously also been linked to human infection with the same strain. Faecal samples were collected over up to a 2-month period and analysed for VTEC O157 by immuno-magnetic separation (IMS), and IMS positive samples were further analysed by direct plating to elucidate the shedding pattern. Samples were also collected from the pharynx.</p> <p>Results</p> <p>All inoculated calves proved culture-positive in faeces within 24 hours after inoculation and the un-inoculated calves similarly on days 1 and 3 post-inoculation. One calf was persistently culture-positive for 43 days; in the remainder, the VTEC O157:H7 count in faeces decreased over the first 2 weeks. All pharyngeal samples were culture-negative for VTEC O157:H7.</p> <p>Conclusion</p> <p>This study contributes with information concerning the dynamics of a specific subtype of VTEC O157:H7 colonisation in dairy calves. This subtype, VTEC O157:H7 (PT4;<it>vtx</it><sub>2;</sub><it>vtx</it><sub>2c</sub>), is frequently isolated from Swedish cattle and has also been found to cause the majority of reported human infections in Sweden during the past 15 years. In most calves, inoculated with a representative strain of this specific subtype, the numbers of shed bacteria declined over the first two weeks. One calf could possibly be classified as a high-shedder, excreting high levels of the bacterium for a prolonged period.</p
Corroborating indicates nurses’ ethical values in a geriatric ward
The aim of the study was to identify nurses’ ethical values, which become apparent through their behaviour in the interactions with older patients in caring encounters at a geriatric clinic
Parent-of-origin-specific allelic associations among 106 genomic loci for age at menarche.
Age at menarche is a marker of timing of puberty in females. It varies widely between individuals, is a heritable trait and is associated with risks for obesity, type 2 diabetes, cardiovascular disease, breast cancer and all-cause mortality. Studies of rare human disorders of puberty and animal models point to a complex hypothalamic-pituitary-hormonal regulation, but the mechanisms that determine pubertal timing and underlie its links to disease risk remain unclear. Here, using genome-wide and custom-genotyping arrays in up to 182,416 women of European descent from 57 studies, we found robust evidence (P < 5 × 10(-8)) for 123 signals at 106 genomic loci associated with age at menarche. Many loci were associated with other pubertal traits in both sexes, and there was substantial overlap with genes implicated in body mass index and various diseases, including rare disorders of puberty. Menarche signals were enriched in imprinted regions, with three loci (DLK1-WDR25, MKRN3-MAGEL2 and KCNK9) demonstrating parent-of-origin-specific associations concordant with known parental expression patterns. Pathway analyses implicated nuclear hormone receptors, particularly retinoic acid and γ-aminobutyric acid-B2 receptor signalling, among novel mechanisms that regulate pubertal timing in humans. Our findings suggest a genetic architecture involving at least hundreds of common variants in the coordinated timing of the pubertal transition
Hundreds of variants clustered in genomic loci and biological pathways affect human height
Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence the phenotype. Genome-wide association (GWA) studies have identified more than 600 variants associated with human traits, but these typically explain small fractions of phenotypic variation, raising questions about the use of further studies. Here, using 183,727 individuals, we show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait. The large number of loci reveals patterns with important implications for genetic studies of common human diseases and traits. First, the 180 loci are not random, but instead are enriched for genes that are connected in biological pathways (P = 0.016) and that underlie skeletal growth defects (P < 0.001). Second, the likely causal gene is often located near the most strongly associated variant: in 13 of 21 loci containing a known skeletal growth gene, that gene was closest to the associated variant. Third, at least 19 loci have multiple independently associated variants, suggesting that allelic heterogeneity is a frequent feature of polygenic traits, that comprehensive explorations of already-discovered loci should discover additional variants and that an appreciable fraction of associated loci may have been identified. Fourth, associated variants are enriched for likely functional effects on genes, being over-represented among variants that alter amino-acid structure of proteins and expression levels of nearby genes. Our data explain approximately 10% of the phenotypic variation in height, and we estimate that unidentified common variants of similar effect sizes would increase this figure to approximately 16% of phenotypic variation (approximately 20% of heritable variation). Although additional approaches are needed to dissect the genetic architecture of polygenic human traits fully, our findings indicate that GWA studies can identify large numbers of loci that implicate biologically relevant genes and pathways.
- …