54 research outputs found

    Multi-Scale CNT-Based Reinforcing Polymer Matrix Composites for Lightweight Structures

    Get PDF
    Reinforcing critical areas in carbon polymer matrix composites (PMCs), also known as fiber reinforced composites (FRCs), is advantageous for structural durability. Since carbon nanotubes (CNTs) have extremely high tensile strength, they can be used as a functional additive to enhance the mechanical properties of FRCs. However, CNTs are not readily dispersible in the polymer matrix, which leads to lower than theoretically predicted improvement in mechanical, thermal, and electrical properties of CNT composites. The inability to align CNTs in a polymer matrix is also a known issue. The feasibility of incorporating aligned CNTs into an FRC was demonstrated using a novel, yet commercially viable nanofiber approach, termed NRMs (nanofiber-reinforcing mats). The NRM concept of reinforcement allows for a convenient and safe means of incorporating CNTs into FRC structural components specifically where they are needed during the fabrication process. NRMs, fabricated through a novel and scalable process, were incorporated into FRC test panels using layup and vacuum bagging techniques, where alternating layers of the NRM and carbon prepreg were used to form the reinforced FRC structure. Control FRC test panel coupons were also fabricated in the same manner, but comprised of only carbon prepreg. The FRC coupons were machined to size and tested for flexural, tensile, and compression properties. This effort demonstrated that FRC structures can be fabricated using the NRM concept, with an increased average load at break during flexural testing versus that of the control. The NASA applications for the developed technologies are for lightweight structures for in-space and launch vehicles. In addition, the developed technologies would find use in NASA aerospace applications such as rockets, aircraft, aircraft/spacecraft propulsion systems, and supporting facilities. The reinforcing aspect of the technology will allow for more efficient joining of fiber composite parts, thus offering additional weight savings. More robust structures capable of withstanding micrometeoroid and space debris impacts will be possible with the enhanced mechanical properties imparted by the aligned CNTs incorporated into the fiber composite structure, as well as the potential for improved electrical and thermal properties. The materials fabrication approach developed in the present effort is a platform for customer applications where additional reinforcement is required or would be beneficial, especially in FRC structures and component parts. Depending upon the specific customer application, the NRM could be tailored to the specific matrix resin and desired property enhancement

    Common Co-activation of AXL and CDCP1 in EGFR-mutation-positive Non-smallcell Lung Cancer Associated With Poor Prognosis.

    Get PDF
    Epidermal growth factor receptor (EGFR)-mutation-positive non-smallcell lung cancer (NSCLC) is incurable, despite high rates of response to EGFR tyrosine kinase inhibitors (TKIs). We investigated receptor tyrosine kinases (RTKs), Src family kinases and focal adhesion kinase (FAK) as genetic modifiers of innate resistance in EGFR-mutation-positive NSCLC. We performed gene expression analysis in two cohorts (Cohort 1 and Cohort 2) of EGFR-mutation-positive NSCLC patients treated with EGFR TKI. We evaluated the efficacy of gefitinib or osimertinib with the Src/FAK/Janus kinase 2 (JAK2) inhibitor, TPX0005 in vitro and in vivo. In Cohort 1, CUB domain-containing protein-1 (CDCP1) was an independent negative prognostic factor for progression-free survival (hazard ratio of 1.79, p=0.0407) and overall survival (hazard ratio of 2.23, p=0.0192). A two-gene model based on AXL and CDCP1 expression was strongly associated with the clinical outcome to EGFR TKIs, in both cohorts of patients. Our preclinical experiments revealed that several RTKs and non-RTKs, were up-regulated at baseline or after treatment with gefitinib or osimertinib. TPX-0005 plus EGFR TKI suppressed expression and activation of RTKs and downstream signaling intermediates. Co-expression of CDCP1 and AXL is often observed in EGFR-mutation-positive tumors, limiting the efficacy of EGFR TKIs. Co-treatment with EGFR TKI and TPX-0005 warrants testing

    Routine HIV Screening in France: Clinical Impact and Cost-Effectiveness

    Get PDF
    BACKGROUND. In France, roughly 40,000 HIV-infected persons are unaware of their HIV infection. Although previous studies have evaluated the cost-effectiveness of routine HIV screening in the United States, differences in both the epidemiology of infection and HIV testing behaviors warrant a setting-specific analysis for France. METHODS/PRINCIPAL FINDINGS. We estimated the life expectancy (LE), cost and cost-effectiveness of alternative HIV screening strategies in the French general population and high-risk sub-populations using a computer model of HIV detection and treatment, coupled with French national clinical and economic data. We compared risk-factor-based HIV testing ("current practice") to universal routine, voluntary HIV screening in adults aged 18-69. Screening frequencies ranged from once to annually. Input data included mean age (42 years), undiagnosed HIV prevalence (0.10%), annual HIV incidence (0.01%), test acceptance (79%), linkage to care (75%) and cost/test (€43). We performed sensitivity analyses on HIV prevalence and incidence, cost estimates, and the transmission benefits of ART. "Current practice" produced LEs of 242.82 quality-adjusted life months (QALM) among HIV-infected persons and 268.77 QALM in the general population. Adding a one-time HIV screen increased LE by 0.01 QALM in the general population and increased costs by €50/person, for a cost-effectiveness ratio (CER) of €57,400 per quality-adjusted life year (QALY). More frequent screening in the general population increased survival, costs and CERs. Among injection drug users (prevalence 6.17%; incidence 0.17%/year) and in French Guyana (prevalence 0.41%; incidence 0.35%/year), annual screening compared to every five years produced CERs of €51,200 and €46,500/QALY. CONCLUSIONS/SIGNIFICANCE. One-time routine HIV screening in France improves survival compared to "current practice" and compares favorably to other screening interventions recommended in Western Europe. In higher-risk groups, more frequent screening is economically justifiable.Haute Autorite de Sante; the Institut de Veille Sanitaire; Sidaction; the Agence Nationale de Recherches sur le SIDA et les hepatites virales; the National Institute of Allergy and Infectious Diseases (R01 AI042006, K24 AI062476, P30 AI42851); the National Institute of Mental Health (R01 MH65869); the National Institute on Drug Abuse (R01 DA015612

    Fine-mapping of the HNF1B multicancer locus identifies candidate variants that mediate endometrial cancer risk.

    Get PDF
    Common variants in the hepatocyte nuclear factor 1 homeobox B (HNF1B) gene are associated with the risk of Type II diabetes and multiple cancers. Evidence to date indicates that cancer risk may be mediated via genetic or epigenetic effects on HNF1B gene expression. We previously found single-nucleotide polymorphisms (SNPs) at the HNF1B locus to be associated with endometrial cancer, and now report extensive fine-mapping and in silico and laboratory analyses of this locus. Analysis of 1184 genotyped and imputed SNPs in 6608 Caucasian cases and 37 925 controls, and 895 Asian cases and 1968 controls, revealed the best signal of association for SNP rs11263763 (P = 8.4 × 10(-14), odds ratio = 0.86, 95% confidence interval = 0.82-0.89), located within HNF1B intron 1. Haplotype analysis and conditional analyses provide no evidence of further independent endometrial cancer risk variants at this locus. SNP rs11263763 genotype was associated with HNF1B mRNA expression but not with HNF1B methylation in endometrial tumor samples from The Cancer Genome Atlas. Genetic analyses prioritized rs11263763 and four other SNPs in high-to-moderate linkage disequilibrium as the most likely causal SNPs. Three of these SNPs map to the extended HNF1B promoter based on chromatin marks extending from the minimal promoter region. Reporter assays demonstrated that this extended region reduces activity in combination with the minimal HNF1B promoter, and that the minor alleles of rs11263763 or rs8064454 are associated with decreased HNF1B promoter activity. Our findings provide evidence for a single signal associated with endometrial cancer risk at the HNF1B locus, and that risk is likely mediated via altered HNF1B gene expression

    Predictive models for mutations in mismatch repair genes: implication for genetic counseling in developing countries

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Lynch syndrome (LS) is the most common form of inherited predisposition to colorectal cancer (CRC), accounting for 2-5% of all CRC. LS is an autosomal dominant disease characterized by mutations in the mismatch repair genes mutL homolog 1 (MLH1), mutS homolog 2 (MSH2), postmeiotic segregation increased 1 (PMS1), post-meiotic segregation increased 2 (PMS2) and mutS homolog 6 (MSH6). Mutation risk prediction models can be incorporated into clinical practice, facilitating the decision-making process and identifying individuals for molecular investigation. This is extremely important in countries with limited economic resources. This study aims to evaluate sensitivity and specificity of five predictive models for germline mutations in repair genes in a sample of individuals with suspected Lynch syndrome.</p> <p>Methods</p> <p>Blood samples from 88 patients were analyzed through sequencing MLH1, MSH2 and MSH6 genes. The probability of detecting a mutation was calculated using the PREMM, Barnetson, MMRpro, Wijnen and Myriad models. To evaluate the sensitivity and specificity of the models, receiver operating characteristic curves were constructed.</p> <p>Results</p> <p>Of the 88 patients included in this analysis, 31 mutations were identified: 16 were found in the MSH2 gene, 15 in the MLH1 gene and no pathogenic mutations were identified in the MSH6 gene. It was observed that the AUC for the PREMM (0.846), Barnetson (0.850), MMRpro (0.821) and Wijnen (0.807) models did not present significant statistical difference. The Myriad model presented lower AUC (0.704) than the four other models evaluated. Considering thresholds of ≥ 5%, the models sensitivity varied between 1 (Myriad) and 0.87 (Wijnen) and specificity ranged from 0 (Myriad) to 0.38 (Barnetson).</p> <p>Conclusions</p> <p>The Barnetson, PREMM, MMRpro and Wijnen models present similar AUC. The AUC of the Myriad model is statistically inferior to the four other models.</p

    Fast, Efficient, Narrowband Room-Temperature Phosphorescence from Metal-Free 1,2-Diketones: Rational Design and Mechanism

    No full text
    We report metal-free organic 1,2-diketones that exhibit fast and highly efficient room-temperature phosphorescence (RTP) with high color purity under various conditions, including solutions. RTP quantum yields reached 38.2% in solution under Ar, 54% in a polymer matrix in air, and 50% in a crystalline solids in air. Moreover, the narrowband RTP consistently dominated the steady-state emission, regardless of the molecular environment. A detailed investigation of the emission mechanism using ultrafast spectroscopy, single-crystal X-ray structure analysis, and theoretical calculations revealed picoseconds intersystem crossing followed by RTP from a planar conformation. Thus, we attribute the high efficiency RTP across diverse molecular environments to an inherent ~5000-s–1 phosphorescence rate constant comparable to that of platinum porphyrin complexes. The planar conformation reflected a design principle for fast and narrowband RTP. This strategy complements the streamlined persistent RTP approach and enables the development of organic phosphors with emissions independent of environmental conditions, thereby offering alternatives to precious-metal based phosphors
    • …
    corecore