47 research outputs found

    Strain Partitioning and Frictional Behavior of Opalinus Clay During Fault Reactivation

    Get PDF
    The Opalinus Clay (OPA) formation is considered a suitable host rock candidate for nuclear waste storage. However, the sealing integrity and long-term safety of OPA are potentially compromised by pre-existing natural or artificially induced faults. Therefore, characterizing the mechanical behavior and microscale deformation mechanisms of faults and the surrounding rock is relevant for predicting repository damage evolution. In this study, we performed triaxial tests using saw-cut samples of the shaly and sandy facies of OPA to investigate the influence of pressure and mineral composition on the deformation behavior during fault reactivation. Dried samples were hydrostatically pre-compacted at 50 MPa and then deformed at constant strain rate, drained conditions and confining pressures (pc) of 5–35 MPa. Mechanical data from triaxial tests was complemented by local strain measurements to determine the relative contribution of bulk deformation and fault slip, as well as by acoustic emission (AE) monitoring, and elastic P-wave velocity measurements using ultrasonic transmissions. With increasing pc, we observe a transition from brittle deformation behavior with highly localized fault slip to semi-brittle behavior characterized by non-linear strain hardening with increasing delocalization of deformation. We find that brittle localization behavior is limited by pc at which fault strength exceeds matrix yield strength. AEs were only detected in tests performed on sandy facies samples, and activity decreased with increasing pc. Microstructural analysis of deformed samples revealed a positive correlation between increasing pc and gouge layer thickness. This goes along with a change from brittle fragmentation and frictional sliding to the development of shear zones with a higher contribution of cataclastic and granular flow. Friction coefficient at fault reactivation is only slightly higher for the sandy (µ ~ 0.48) compared to the shaly facies (µ ~ 0.4). Slide-hold-slide tests performed after ~ 6 mm axial shortening suggest stable creeping and long-term weakness of faults at the applied conditions. Our results demonstrate that the mode of fault reactivation highly depends on the present stress field and burial history

    Evidence for Interstitial Carbon in Nitrogenase FeMo Cofactor

    Get PDF
    The identity of the interstitial light atom in the center of the FeMo cofactor of nitrogenase has been enigmatic since its discovery. Atomic-resolution x-ray diffraction data and an electron spin echo envelope modulation (ESEEM) analysis now provide direct evidence that the ligand is a carbon species

    Bird Cryptochrome 1a Is Excited by Blue Light and Forms Long-Lived Radical- Pairs

    Get PDF
    Cryptochromes (Cry) have been suggested to form the basis of light-dependent magnetic compass orientation in birds. However, to function as magnetic compass sensors, the cryptochromes of migratory birds must possess a number of key biophysical characteristics. Most importantly, absorption of blue light must produce radical pairs with lifetimes longer than about a microsecond. Cryptochrome 1a (gwCry1a) and the photolyase-homology-region of Cry1 (gwCry1-PHR) from the migratory garden warbler were recombinantly expressed and purified from a baculovirus/Sf9 cell expression system. Transient absorption measurements show that these flavoproteins are indeed excited by light in the blue spectral range leading to the formation of radicals with millisecond lifetimes. These biophysical characteristics suggest that gwCry1a is ideally suited as a primary light-mediated, radical-pair-based magnetic compass recepto

    Correction: Human and Drosophila Cryptochromes Are Light Activated by Flavin Photoreduction in Living Cells

    Get PDF
    Cryptochromes are a class of flavoprotein blue-light signaling receptors found in plants, animals, and humans that control plant development and the entrainment of circadian rhythms. In plant cryptochromes, light activation is proposed to result from photoreduction of a protein-bound flavin chromophore through intramolecular electron transfer. However, although similar in structure to plant cryptochromes, the light-response mechanism of animal cryptochromes remains entirely unknown. To complicate matters further, there is currently a debate on whether mammalian cryptochromes respond to light at all or are instead activated by non–light-dependent mechanisms. To resolve these questions, we have expressed both human and Drosophila cryptochrome proteins to high levels in living Sf21 insect cells using a baculovirus-derived expression system. Intact cells are irradiated with blue light, and the resulting cryptochrome photoconversion is monitored by fluorescence and electron paramagnetic resonance spectroscopic techniques. We demonstrate that light induces a change in the redox state of flavin bound to the receptor in both human and Drosophila cryptochromes. Photoreduction from oxidized flavin and subsequent accumulation of a semiquinone intermediate signaling state occurs by a conserved mechanism that has been previously identified for plant cryptochromes. These results provide the first evidence of how animal-type cryptochromes are activated by light in living cells. Furthermore, human cryptochrome is also shown to undergo this light response. Therefore, human cryptochromes in exposed peripheral and/or visual tissues may have novel light-sensing roles that remain to be elucidated

    Computed tomography-osteoabsorptiometry for assessing the density distribution of subchondral bone as a measure of long-term mechanical adaptation in individual joints

    Get PDF
    To estimate subchondral mineralisation patterns which represent the long-term loading history of individual joints, a method has been developed employing computed tomography (CT) which permits repeated examination of living joints. The method was tested on 5 knee, 3 sacroiliac, 3 ankle and 5 shoulder joints and then investigated with X-ray densitometry. A CT absorptiometric presentation and maps of the area distribution of the subchondral bone density areas were derived using an image analyser. Comparison of the results from both X-ray densitometry and CT-absorptiometry revealed almost identical pictures of distribution of the subchondral bone density. The method may be used to examine subchondral mineralisation as a measure of the mechanical adaptability of joints in the living subject

    Detecting direct collapse black holes: making the case for CR7

    Get PDF
    We propose that one of the sources in the recently detected system CR7 by Sobral et al. (2015) through spectro-photometric measurements at z=6.6z = 6.6 harbors a direct collapse blackhole (DCBH). We argue that the LW radiation field required for direct collapse in source A is provided by sources B and C. By tracing the LW production history and star formation rate over cosmic time for the halo hosting CR7 in a Λ\LambdaCDM universe, we demonstrate that a DCBH could have formed at z20z\sim 20. The spectrum of source A is well fit by nebular emission from primordial gas around a BH with MBH 4.4×106 M\sim 4.4 \times 10^6 \ \rm M_{\odot} accreting at a 40 % of the Eddington rate, which strongly supports our interpretation of the data. Combining these lines of evidence, we argue that CR7 might well be the first DCBH candidate.Comment: 8 pages, 4 figures. Accepted for publication in MNRA

    Chemical Magnetoreception: Bird Cryptochrome 1a Is Excited by Blue Light and Forms Long-Lived Radical-Pairs

    Get PDF
    Cryptochromes (Cry) have been suggested to form the basis of light-dependent magnetic compass orientation in birds. However, to function as magnetic compass sensors, the cryptochromes of migratory birds must possess a number of key biophysical characteristics. Most importantly, absorption of blue light must produce radical pairs with lifetimes longer than about a microsecond. Cryptochrome 1a (gwCry1a) and the photolyase-homology-region of Cry1 (gwCry1-PHR) from the migratory garden warbler were recombinantly expressed and purified from a baculovirus/Sf9 cell expression system. Transient absorption measurements show that these flavoproteins are indeed excited by light in the blue spectral range leading to the formation of radicals with millisecond lifetimes. These biophysical characteristics suggest that gwCry1a is ideally suited as a primary light-mediated, radical-pair-based magnetic compass receptor

    Genome-wide association and Mendelian randomisation analysis provide insights into the pathogenesis of heart failure

    Get PDF
    Heart failure (HF) is a leading cause of morbidity and mortality worldwide. A small proportion of HF cases are attributable to monogenic cardiomyopathies and existing genome-wide association studies (GWAS) have yielded only limited insights, leaving the observed heritability of HF largely unexplained. We report results from a GWAS meta-analysis of HF comprising 47,309 cases and 930,014 controls. Twelve independent variants at 11 genomic loci are associated with HF, all of which demonstrate one or more associations with coronary artery disease (CAD), atrial fibrillation, or reduced left ventricular function, suggesting shared genetic aetiology. Functional analysis of non-CAD-associated loci implicate genes involved in cardiac development (MYOZ1, SYNPO2L), protein homoeostasis (BAG3), and cellular senescence (CDKN1A). Mendelian randomisation analysis supports causal roles for several HF risk factors, and demonstrates CAD-independent effects for atrial fibrillation, body mass index, and hypertension. These findings extend our knowledge of the pathways underlying HF and may inform new therapeutic strategies

    Genome-wide association and Mendelian randomisation analysis provide insights into the pathogenesis of heart failure

    Get PDF
    Abstract: Heart failure (HF) is a leading cause of morbidity and mortality worldwide. A small proportion of HF cases are attributable to monogenic cardiomyopathies and existing genome-wide association studies (GWAS) have yielded only limited insights, leaving the observed heritability of HF largely unexplained. We report results from a GWAS meta-analysis of HF comprising 47,309 cases and 930,014 controls. Twelve independent variants at 11 genomic loci are associated with HF, all of which demonstrate one or more associations with coronary artery disease (CAD), atrial fibrillation, or reduced left ventricular function, suggesting shared genetic aetiology. Functional analysis of non-CAD-associated loci implicate genes involved in cardiac development (MYOZ1, SYNPO2L), protein homoeostasis (BAG3), and cellular senescence (CDKN1A). Mendelian randomisation analysis supports causal roles for several HF risk factors, and demonstrates CAD-independent effects for atrial fibrillation, body mass index, and hypertension. These findings extend our knowledge of the pathways underlying HF and may inform new therapeutic strategies
    corecore