128 research outputs found
Thin-shell plastic lenses for space and laboratory applications
We have identified an inexpensive, readily available, mechanically stable, extremely smooth, elastic, and mechanically uniform plastic suitable for thin film X-ray optics. Polyethylene terephthalate (PET) is easily deformed without losing its elastic properties or surface smoothness. Most important, PET can be coated with mono- or multilayers that reflect X-rays at grazing incidence. We have used these properties to produce X-ray optics made either as a concentric nest of cylinders or as a spiral. We have produced accurately formed shells in precisely machined vacuum mandresl or used a pin and wheel structure to form a continuously wound spiral. The wide range of medical, industrial and scientific applications for our technology includes: a monochromatic X-ray collimater for medical diagnostics, a relay optic to transport an X-ray beam from the target in a scanning electron microscop0e to a lithium-drifted silicon and microcalorimeter detectors and a satellite mounted telescope to collect celestial X-rays. A wide variety of mono- and multilayer coatings allow X-rays up to ~100 keV to be reflected. Our paper presents data from a variety of diagnostic measurements on the properties of the PET foil and imaging results form single- and multi-shell lenses
The ATLAS3D project - XXIX : The new look of early-type galaxies and surrounding fields disclosed by extremely deep optical images
Date of Acceptance: 25/09/2014Galactic archaeology based on star counts is instrumental to reconstruct the past mass assembly of Local Group galaxies. The development of new observing techniques and data reduction, coupled with the use of sensitive large field of view cameras, now allows us to pursue this technique in more distant galaxies exploiting their diffuse low surface brightness (LSB) light. As part of the ATLAS3D project, we have obtained with the MegaCam camera at the Canada-France-Hawaii Telescope extremely deep, multiband images of nearby early-type galaxies (ETGs). We present here a catalogue of 92 galaxies from the ATLAS3D sample, which are located in low- to medium-density environments. The observing strategy and data reduction pipeline, which achieve a gain of several magnitudes in the limiting surface brightness with respect to classical imaging surveys, are presented. The size and depth of the survey are compared to other recent deep imaging projects. The paper highlights the capability of LSB-optimized surveys at detecting new prominent structures that change the apparent morphology of galaxies. The intrinsic limitations of deep imaging observations are also discussed, among those, the contamination of the stellar haloes of galaxies by extended ghost reflections, and the cirrus emission from Galactic dust. The detection and systematic census of fine structures that trace the present and past mass assembly of ETGs are one of the prime goals of the project. We provide specific examples of each type of observed structures - tidal tails, stellar streams and shells - and explain how they were identified and classified. We give an overview of the initial results. The detailed statistical analysis will be presented in future papers.Peer reviewedFinal Accepted Versio
Thin-shell plastic lenses for space and laboratory applications
We have identified an inexpensive, readily available, mechanically stable, extremely smooth, elastic, and mechanically uniform plastic suitable for thin film X-ray optics. Polyethylene terephthalate (PET) is easily deformed without losing its elastic properties or surface smoothness. Most important, PET can be coated with mono- or multilayers that reflect X-rays at grazing incidence. We have used these properties to produce X-ray optics made either as a concentric nest of cylinders or as a spiral. We have produced accurately formed shells in precisely machined vacuum mandresl or used a pin and wheel structure to form a continuously wound spiral. The wide range of medical, industrial and scientific applications for our technology includes: a monochromatic X-ray collimater for medical diagnostics, a relay optic to transport an X-ray beam from the target in a scanning electron microscop0e to a lithium-drifted silicon and microcalorimeter detectors and a satellite mounted telescope to collect celestial X-rays. A wide variety of mono- and multilayer coatings allow X-rays up to ~100 keV to be reflected. Our paper presents data from a variety of diagnostic measurements on the properties of the PET foil and imaging results form single- and multi-shell lenses
LEDGF/p75 Proteins with Alternative Chromatin Tethers Are Functional HIV-1 Cofactors
LEDGF/p75 can tether over-expressed lentiviral integrase proteins to chromatin but how this underlies its integration cofactor role for these retroviruses is unclear. While a single integrase binding domain (IBD) binds integrase, a complex N-terminal domain ensemble (NDE) interacts with unknown chromatin ligands. Whether integration requires chromatin tethering per se, specific NDE-chromatin ligand interactions or other emergent properties of LEDGF/p75 has been elusive. Here we replaced the NDE with strongly divergent chromatin-binding modules. The chimeras rescued integrase tethering and HIV-1 integration in LEDGF/p75-deficient cells. Furthermore, chromatin ligands could reside inside or outside the nucleosome core, and could be protein or DNA. Remarkably, a short Kaposi's sarcoma virus peptide that binds the histone 2A/B dimer converted GFP-IBD from an integration blocker to an integration cofactor that rescues over two logs of infectivity. NDE mutants were corroborative. Chromatin tethering per se is a basic HIV-1 requirement and this rather than engagement of particular chromatin ligands is important for the LEDGF/p75 cofactor mechanism
A high-quality human reference panel reveals the complexity and distribution of genomic structural variants
Structural variation (SV) represents a major source of differences between individual human genomes and has been linked to disease phenotypes. However, the majority of studies provide neither a global view of the full spectrum of these variants nor integrate them into reference panels of genetic variation. Here, we analyse whole genome sequencing data of 769 individuals from 250 Dutch families, and provide a haplotype-resolved map of 1.9 million genome variants across 9 different variant classes, including novel forms of complex indels, and retrotransposition-mediated insertions of mobile elements and processed RNAs. A large proportion are previously under reported variants sized between 21 and 100 bp. We detect 4 megabases of novel sequence, encoding 11 new transcripts. Finally, we show 191 known, trait-associated SNPs to be in strong linkage disequilibrium with SVs and demonstrate that our panel facilitates accurate imputation of SVs in unrelated individuals
Recommended from our members
Improved imputation quality of low-frequency and rare variants in European samples using the ‘Genome of The Netherlands'
Although genome-wide association studies (GWAS) have identified many common variants associated with complex traits, low-frequency and rare variants have not been interrogated in a comprehensive manner. Imputation from dense reference panels, such as the 1000 Genomes Project (1000G), enables testing of ungenotyped variants for association. Here we present the results of imputation using a large, new population-specific panel: the Genome of The Netherlands (GoNL). We benchmarked the performance of the 1000G and GoNL reference sets by comparing imputation genotypes with ‘true' genotypes typed on ImmunoChip in three European populations (Dutch, British, and Italian). GoNL showed significant improvement in the imputation quality for rare variants (MAF 0.05–0.5%) compared with 1000G. In Dutch samples, the mean observed Pearson correlation, r2, increased from 0.61 to 0.71. We also saw improved imputation accuracy for other European populations (in the British samples, r2 improved from 0.58 to 0.65, and in the Italians from 0.43 to 0.47). A combined reference set comprising 1000G and GoNL improved the imputation of rare variants even further. The Italian samples benefitted the most from this combined reference (the mean r2 increased from 0.47 to 0.50). We conclude that the creation of a large population-specific reference is advantageous for imputing rare variants and that a combined reference panel across multiple populations yields the best imputation results
WGS-based telomere length analysis in Dutch family trios implicates stronger maternal inheritance and a role for RRM1 gene
Telomere length (TL) regulation is an important factor in ageing, reproduction and cancer development. Genetic, hereditary and environmental factors regulating TL are currently widely investigated, however, their relative contribution to TL variability is still understudied. We have used whole genome sequencing data of 250 family trios from the Genome of the Netherlands project to perform computational measurement of TL and a series of regression and genome-wide association analyses to reveal TL inheritance patterns and associated genetic factors. Our results confirm that TL is a largely heritable trait, primarily with mother’s, and, to a lesser extent, with father’s TL having the strongest influence on the offspring. In this cohort, mother’s, but not father’s age at conception was positively linked to offspring TL. Age-related TL attrition of 40 bp/year had relatively small influence on TL variability. Finally, we have identified TL-associated variations in ribonuclease reductase catalytic subunit M1 (RRM1 gene), which is known to regulate telomere maintenance in yeast. We also highlight the importance of multivariate approach and the limitations of existing tools for the analysis of TL as a polygenic heritable quantitative trait
LncRNA-OIS1 regulates DPP4 activation to modulate senescence induced by RAS
Oncogene-induced senescence (OIS), provoked in response to oncogenic activation, is considered an important tumor suppressor mechanism. Long noncoding RNAs (lncRNAs) are transcripts longer than 200 nt without a protein-coding capacity. Functional studies showed that deregulated lncRNA expression promote tumorigenesis and metastasis and that lncRNAs may exhibit tumor-suppressive and oncogenic function. Here, we first identified lncRNAs that were differentially expressed between senescent and non-senescent human fibroblast cells. Using RNA interference, we performed a loss-function screen targeting the differentially expressed lncRNAs, and identified lncRNA-OIS1 (lncRNA#32, AC008063.3 or ENSG00000233397) as a lncRNA required for OIS. Knockdown of lncRNA-OIS1 triggered bypass of senescence, higher proliferation rate, lower abundance of the cell-cycle inhibitor CDKN1A and high expression of cell-cycle-associated genes. Subcellular inspection of lncRNA-OIS1 indicated nuclear and cytosolic localization in both normal culture conditions as well as following oncogene induction. Interestingly, silencing lncRNA-OIS1 diminished the senescent-associated induction of a nearby gene (Dipeptidyl Peptidase 4, DPP4) with established role
Clinical, physiologic, and radiographic factors contributing to development of hypoxemia in moderate to severe COPD:a cohort study
Background: Hypoxemia is a major complication of COPD and is a strong predictor of mortality. We previously identified independent risk factors for the presence of resting hypoxemia in the COPDGene cohort. However, little is known about characteristics that predict onset of resting hypoxemia in patients who are normoxic at baseline. We hypothesized that a combination of clinical, physiologic, and radiographic characteristics would predict development of resting hypoxemia after 5-years of follow-up in participants with moderate to severe COPD Methods: We analyzed 678 participants with moderate-to-severe COPD recruited into the COPDGene cohort who completed baseline and 5-year follow-up visits and who were normoxic by pulse oximetry at baseline. Development of resting hypoxemia was defined as an oxygen saturation ≤88% on ambient air at rest during follow-up. Demographic and clinical characteristics, lung function, and radiographic indices were analyzed with logistic regression models to identify predictors of the development of hypoxemia. Results: Forty-six participants (7%) developed resting hypoxemia at follow-up. Enrollment at Denver (OR 8.30, 95%CI 3.05–22.6), lower baseline oxygen saturation (OR 0.70, 95%CI 0.58–0.85), self-reported heart failure (OR 6.92, 95%CI 1.56–30.6), pulmonary artery (PA) enlargement on computed tomography (OR 2.81, 95%CI 1.17–6.74), and prior severe COPD exacerbation (OR 3.31, 95%CI 1.38–7.90) were independently associated with development of resting hypoxemia. Participants who developed hypoxemia had greater decline in 6-min walk distance and greater 5-year decline in quality of life compared to those who remained normoxic at follow-up. Conclusions: Development of clinically significant hypoxemia over a 5-year span is associated with comorbid heart failure, PA enlargement and severe COPD exacerbation. Further studies are needed to determine if treatments targeting these factors can prevent new onset hypoxemia. Trial registration COPDGene is registered at ClinicalTrials.gov: NCT00608764 (Registration Date: January 28, 2008) Electronic supplementary material The online version of this article (doi:10.1186/s12890-016-0331-0) contains supplementary material, which is available to authorized users
Recommended from our members
A framework for the detection of de novo mutations in family-based sequencing data
Germline mutation detection from human DNA sequence data is challenging due to the rarity of such events relative to the intrinsic error rates of sequencing technologies and the uneven coverage across the genome. We developed PhaseByTransmission (PBT) to identify de novo single nucleotide variants and short insertions and deletions (indels) from sequence data collected in parent-offspring trios. We compute the joint probability of the data given the genotype likelihoods in the individual family members, the known familial relationships and a prior probability for the mutation rate. Candidate de novo mutations (DNMs) are reported along with their posterior probability, providing a systematic way to prioritize them for validation. Our tool is integrated in the Genome Analysis Toolkit and can be used together with the ReadBackedPhasing module to infer the parental origin of DNMs based on phase-informative reads. Using simulated data, we show that PBT outperforms existing tools, especially in low coverage data and on the X chromosome. We further show that PBT displays high validation rates on empirical parent-offspring sequencing data for whole-exome data from 104 trios and X-chromosome data from 249 parent-offspring families. Finally, we demonstrate an association between father's age at conception and the number of DNMs in female offspring's X chromosome, consistent with previous literature reports
- …