49 research outputs found

    Protein turnover of the Wallenda/DLK kinase regulates a retrograde response to axonal injury

    Get PDF
    Regenerative responses to axonal injury involve changes in gene expression; however, little is known about how such changes can be induced from a distant site of injury. In this study, we describe a nerve crush assay in Drosophila melanogaster to study injury signaling and regeneration mechanisms. We find that Wallenda (Wnd), a conserved mitogen-activated protein kinase (MAPK) kinase kinase homologous to dual leucine zipper kinase, functions as an upstream mediator of a cell-autonomous injury signaling cascade that involves the c-Jun NH(2)-terminal kinase MAPK and Fos transcription factor. Wnd is physically transported in axons, and axonal transport is required for the injury signaling mechanism. Wnd is regulated by a conserved E3 ubiquitin ligase, named Highwire (Hiw) in Drosophila. Injury induces a rapid increase in Wnd protein concomitantly with a decrease in Hiw protein. In hiw mutants, injury signaling is constitutively active, and neurons initiate a faster regenerative response. Our data suggest that the regulation of Wnd protein turnover by Hiw can function as a damage surveillance mechanism for responding to axonal injury

    Genetic Data Showing Evolutionary Links between Leishmania and Endotrypanum

    Full text link
    Striking similarities at the morphological, molecular and biological levels exist between many trypanosomatids isolated from sylvatic insects and/or vertebrate reservoir hosts that make the identification of medically important parasites demanding. Some molecular data have pointed to the relationship between some Leishmania species and Endotrypanum, which has an important epidemiological significance and can be helpful to understand the evolution of those parasites. In this study, we have demonstrated a close genetic relationship between Endotrypanum and two new leishmanial species, L. (V.) colombiensis and L. (V.) equatorensis. We have used (a) numerical zymotaxonomy and (b) the variability of the internal transcribed spacers of the rRNA genes to examine relationships in this group. The evolutionary trees obtained revealed high genetic similarity between L. (V.) colombiensis, L. (V.) equatorensis and Endotrypanum, forming a tight cluster of parasites. Based on further results of (c) minicircle kDNA heterogeneity analysis and (d) measurement of the sialidase activity these parasites were also grouped together

    Rab8, POSH, and TAK1 regulate synaptic growth in a Drosophila model of frontotemporal dementia

    Get PDF
    Mutations in genes essential for protein homeostasis have been identified in frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) patients. Why mature neurons should be particularly sensitive to such perturbations is unclear. We identified mutations in Rab8 in a genetic screen for enhancement of an FTD phenotype associated with ESCRT-III dysfunction. Examination of Rab8 mutants or motor neurons expressing a mutant ESCRT-III subunit, CHMP2BIntron5, at the Drosophila melanogaster neuromuscular junction synapse revealed synaptic overgrowth and endosomal dysfunction. Expression of Rab8 rescued overgrowth phenotypes generated by CHMP2BIntron5. In Rab8 mutant synapses, c-Jun N-terminal kinase (JNK)/activator protein-1 and TGF-β signaling were overactivated and acted synergistically to potentiate synaptic growth. We identify novel roles for endosomal JNK-scaffold POSH (Plenty-of-SH3s) and a JNK kinase kinase, TAK1, in regulating growth activation in Rab8 mutants. Our data uncover Rab8, POSH, and TAK1 as regulators of synaptic growth responses and point to recycling endosome as a key compartment for synaptic growth regulation during neurodegenerative processes
    corecore