11 research outputs found

    Effect of the reduced graphene oxide (rGO) compaction degree and concentration on rGO-polymer composite printability and cell interactions

    Get PDF
    Graphene derivatives combined with polymers have attracted enormous attention for bone tissue engineering applications. Among others, reduced graphene oxide (rGO) is one of the preferred graphene-based fillers for the preparation of composites via melt compounding, and their further processing into 3D scaffolds, due to its established large-scale production method, thermal stability, and electrical conductivity. In this study, rGO (low bulk density 10 g L-1) was compacted by densification using a solvent (either acetone or water) prior to melt compounding, to simplify its handling and dosing into a twin-screw extrusion system. The effects of rGO bulk density (medium and high), densification solvent, and rGO concentration (3, 10 and 15% in weight) on rGO dispersion within the composite, electrical conductivity, printability and cell-material interactions were studied. High bulk density rGO (90 g L-1) occupied a low volume fraction within polymer composites, offering poor electrical properties but a reproducible printability up to 15 wt% rGO. On the other hand, the volume fraction within the composites of medium bulk density rGO (50 g L-1) was higher for a given concentration, enhancing rGO particle interactions and leading to enhanced electrical conductivity, but compromising the printability window. For a given bulk density (50 g L-1), rGO densified in water was more compacted and offered poorer dispersability within the polymer than rGO densified in acetone, and resulted in scaffolds with poor layer bonding or even lack of printability at high rGO percentages. A balance in printability and electrical properties was obtained for composites with medium bulk density achieved with rGO densified in acetone. Here, increasing rGO concentration led to more hydrophilic composites with a noticeable increase in protein adsorption. Moreover, scaffolds prepared with such composites presented antimicrobial properties even at low rGO contents (3 wt%). In addition, the viability and proliferation of human mesenchymal stromal cells (hMSCs) were maintained on scaffolds with up to 15% rGO and with enhanced osteogenic differentiation on 3% rGO scaffolds

    Effect of the reduced graphene oxide (rGO) compaction degree and concentration on rGO-polymer composite printability and cell interactions

    No full text
    Graphene derivatives combined with polymers have attracted enormous attention for bone tissue engineering applications. Among others, reduced graphene oxide (rGO) is one of the preferred graphene-based fillers for the preparation of composites via melt compounding, and their further processing into 3D scaffolds, due to its established large-scale production method, thermal stability, and electrical conductivity. In this study, rGO (low bulk density 10 g L-1) was compacted by densification using a solvent (either acetone or water) prior to melt compounding, to simplify its handling and dosing into a twin-screw extrusion system. The effects of rGO bulk density (medium and high), densification solvent, and rGO concentration (3, 10 and 15% in weight) on rGO dispersion within the composite, electrical conductivity, printability and cell-material interactions were studied. High bulk density rGO (90 g L-1) occupied a low volume fraction within polymer composites, offering poor electrical properties but a reproducible printability up to 15 wt% rGO. On the other hand, the volume fraction within the composites of medium bulk density rGO (50 g L-1) was higher for a given concentration, enhancing rGO particle interactions and leading to enhanced electrical conductivity, but compromising the printability window. For a given bulk density (50 g L-1), rGO densified in water was more compacted and offered poorer dispersability within the polymer than rGO densified in acetone, and resulted in scaffolds with poor layer bonding or even lack of printability at high rGO percentages. A balance in printability and electrical properties was obtained for composites with medium bulk density achieved with rGO densified in acetone. Here, increasing rGO concentration led to more hydrophilic composites with a noticeable increase in protein adsorption. Moreover, scaffolds prepared with such composites presented antimicrobial properties even at low rGO contents (3 wt%). In addition, the viability and proliferation of human mesenchymal stromal cells (hMSCs) were maintained on scaffolds with up to 15% rGO and with enhanced osteogenic differentiation on 3% rGO scaffolds

    Alkali‐free processing of advanced open‐celled sinter‐crystallized glass‐ceramics

    No full text
    The cooling of a melt corresponding to the eutectic between wollastonite (CaSiO3) and diopside (CaMgSi2O6) determines the synthesis of an interesting example of alkali-free bioactive glass, easily converted into glass-ceramics featuring two silicate phases, coupled also with Äkermanite (Ca2MgSi2O7), by sinter-crystallization of fine glass powders at 1000°C. The fabrication of scaffolds by digital light processing of glass powders suspended in a photo-curable, sacrificial binder, is a well-established technique; the present paper aims at disclosing novel approaches, concerning the topology of scaffolds, offering components with remarkable strength, especially in bending conditions. As an alternative, glass-ceramic foams were fabricated by the firing of porous precursors derived from the gelation of suspensions of glass powders in alkali-free basic aqueous solution

    Combining bioresorbable polyesters and bioactive glasses: Orthopedic applications of composite implants and bone tissue engineering scaffolds

    No full text
    International audienceThis overview showcases the current state of the art in the fabrication, properties and applications of bioactive glass-polyester composites for dentistry, craniomaxillofacial surgery, orthopedics and bone tissue engineering. The combination of these materials is a successful strategy to simultaneously modulate and optimize the degradation rate, mechanical properties, cell response and osteostimulation of bone substitutes. Two major approaches can be identified: bone regeneration or bone repair. The first is performed using porous scaffolding materials, the second one by dense molded implants. For both strategies, the synthesis, processing and characterization of materials are presented based on a comprehensive review of the available literature. Relevant recent in vitro and in vivo studies are also covered. Current and potential future applications of this interesting family of biocomposites are discussed. The literature search revealed a considerable body of work investigating the biological performance of these composites, evidencing the interest on the topic. In particular, the use of polyester/BG composites is well-studied in terms of material fabrication, as well as characterization of physicochemical and in vitro biological properties. On the other hand, there is much less evidence of translational research efforts. It is apparent that future research will have to focus on the collection of more in vivo and clinical data to broaden the knowledge of the time dependent performance of these materials in realistic condition

    Data Available Statement, manuscript: Cell survival and differentiation with nanocrystalline glass-like carbon using substantia nigra dopaminergic cells derived from transgenic mouse embryos. Rodriguez-Losada et al

    No full text
    This file makes data available in a public repository from the PlosOne article titled: Cell survival and differentiation with nanocrystalline glass-like carbon using substantia nigra dopaminergic cells derived from transgenic mouse embryos. Rodriguez-Losada, N et al. 20171. Funds from the University of Malaga and Campus de Excelencia Internacional AndalucĂ­a Tech (UMA) 2. Junta de Andalucia Government, Spain (PAIDI-CTS156) 3. Spanish Ministry of Science and Innovation through the Ramon y Cajal Fellowship (RG

    Combining bioresorbable polyesters and bioactive glasses: Orthopedic applications of composite implants and bone tissue engineering scaffolds

    No full text
    corecore