62 research outputs found

    Dietary supplementation with multiple micronutrients: No beneficial effects in pediatric cystic fibrosis patients

    Get PDF
    AbstractBackgroundCystic fibrosis (CF) patients are subjected to increased oxidative stress due to chronic pulmonary inflammation and recurrent infections. Additionally, these patients have diminished skeletal muscle performance and exercise capacity. We hypothesize that a mixture of multiple micronutrients could have beneficial effects on pulmonary function and muscle performance.MethodsA double-blind, randomized, placebo controlled, cross-over trial with a mixture of multiple micronutrients (ML1) was performed in 22 CF patients (12.9±2.5 yrs) with predominantly mild lung disease. Anthropometric measures, pulmonary function, exercise performance by bicycle ergometry, muscular strength and vitamins A and E were determined.ResultsAnalysis was performed using the paired Student t-test comparing the change in each parameter during ML1 and placebo. Plasma vitamin E and A levels increased during ML1 when compared to placebo. However, no significant difference between the effect of the ML1 or placebo was observed neither for FEV1, FVC, anthropometry, nor for the parameters for muscle performance.ConclusionsThe micronutrient mixture was not superior to placebo with respect to changes in pulmonary function or muscle performance in pediatric CF patients, despite a significant increase in plasma vitamin E concentrations

    Dry seasons and dry years amplify the Amazon and Congo forests’ rainfall self-reliance 

    Get PDF
    Rainfall is a key determinant of tropical rainforest resilience in South America and Africa, of which a substantial amount originates from terrestrial and forest evaporation through moisture recycling. Both continents face deforestation that reduces evaporation and thus dampens the water cycle, and climate change that increases the risk of water-stress induced forest loss. Hence, it is important to understand the influence of forest moisture supply for forest rainfall during dry periods. Here, we analyze mean-years and dry-years dry-season anomalies of moisture recycling in the South American (Amazon) and African rainforests (Congo) over the years 1980-2013. Annual average reliance of forest rainfall on their own moisture supply (ρfor) is 26 % in the Amazon and 28% in the Congo forest. In dry seasons, this ratio increases by 7% (or ~2 percentage points) in the Amazon and up to 30 % (or ~8 percentage points) in Congo. Dry years further amplify dry season ρfor in both regions by 4-5 %. In both Amazon and Congo, dry season amplification of ρfor are strongest in regions with a high mean annual ρfor. In the Amazon, forest rainfall self-reliance has declined over time, and in both Amazon and Congo, the fraction of forest evaporation that recycles as forest rainfall has declined over time. At country scale, dry season ρfor can differ drastically from mean annual ρfor (e.g., in Bolivia and Gabon, mean annual ρfor is ~30% while dry season ρfor is ~50 %). Dry period amplification of ρfor illuminates additional risks of deforestation as well as opportunities from forest conservation and restoration, and is essential to consider for understanding upwind forest change impacts on downwind rainfall at both regional and national scales

    Dry Periods Amplify the Amazon and Congo Forests' Rainfall Self-Reliance

    Get PDF
    A substantial amount of the tropical forests of South America and Africa is generated through moisture recycling (i.e., forest rainfall self-reliance). Thus, deforestation that reduces evaporation and dampens the water cycle can further increase the risk of water-stress-induced forest loss in downwind areas, particularly during water scarce periods. However, few studies have investigated dry period forest rainfall self-reliance over longer records and consistently compared the rainforest moisture recycling in both continents. Here, we analyze dry-season anomalies of moisture recycling for mean-years and dry-years, in the South American (Amazon) and African (Congo) rainforests over the years 1980-2013. We find that, in the dry seasons, the reliance of forest rainfall on their own moisture supply (ρfor) increases by 7% (from a mean annual value of 26% to 28%) in the Amazon and up to 30% (from 28% to 36%) in the Congo. Dry years further amplify dry season ρfor in both regions by 4-5%. In both the Amazon and Congo, dry season amplification of ρfor is strongest in regions with a high mean annual ρfor. In the Amazon, forest rainfall self-reliance has declined over time. At the country scale, dry season ρfor can differ drastically from mean annual ρfor. In for example Bolivia and Gabon, mean annual ρfor is ~30% while dry season ρfor is ~50%. The dry period amplification of forest rainfall self-reliance further highlights the role of forests for sustaining their own resilience, and for maintaining downwind rainfall at both regional and national scales

    Notable shifts beyond pre-industrial streamflow and soil moisture conditions transgress the planetary boundary for freshwater change

    Get PDF
    Human actions compromise the many life-supporting functions provided by the freshwater cycle. Yet, scientific understanding of anthropogenic freshwater change and its long-term evolution is limited. Here, using a multi-model ensemble of global hydrological models, we estimate how, over a 145-year industrial period (1861–2005), streamflow and soil moisture have deviated from pre-industrial baseline conditions (defined by 5th–95th percentiles, at 0.5° grid level and monthly timestep over 1661–1860). Comparing the two periods, we find an increased frequency of local deviations on ~45% of land area, mainly in regions under heavy direct or indirect human pressures. To estimate humanity’s aggregate impact on these two important elements of the freshwater cycle, we present the evolution of deviation occurrence at regional to global scales. Annually, local streamflow and soil moisture deviations now occur on 18.2% and 15.8% of global land area, respectively, which is 8.0 and 4.7 percentage points beyond the ~3 percentage point wide pre-industrial variability envelope. Our results signify a substantial shift from pre-industrial streamflow and soil moisture reference conditions to persistently increasing change. This indicates a transgression of the new planetary boundary for freshwater change, which is defined and quantified using our approach, calling for urgent actions to reduce human disturbance of the freshwater cycle

    Notable shifts beyond pre-industrial streamflow and soil moisture conditions transgress the planetary boundary for freshwater change

    Get PDF
    Human actions compromise the many life-supporting functions provided by the freshwater cycle. Yet, scientific understanding of anthropogenic freshwater change and its long-term evolution is limited. Here, using a multi-model ensemble of global hydrological models, we estimate how, over a 145-year industrial period (1861–2005), streamflow and soil moisture have deviated from pre-industrial baseline conditions (defined by 5th–95th percentiles, at 0.5° grid level and monthly timestep over 1661–1860). Comparing the two periods, we find an increased frequency of local deviations on ~45% of land area, mainly in regions under heavy direct or indirect human pressures. To estimate humanity’s aggregate impact on these two important elements of the freshwater cycle, we present the evolution of deviation occurrence at regional to global scales. Annually, local streamflow and soil moisture deviations now occur on 18.2% and 15.8% of global land area, respectively, which is 8.0 and 4.7 percentage points beyond the ~3 percentage point wide pre-industrial variability envelope. Our results signify a substantial shift from pre-industrial streamflow and soil moisture reference conditions to persistently increasing change. This indicates a transgression of the new planetary boundary for freshwater change, which is defined and quantified using our approach, calling for urgent actions to reduce human disturbance of the freshwater cycle

    Quantifying Earth system interactions for sustainable food production via expert elicitation

    Get PDF
    Several safe boundaries of critical Earth system processes have already been crossed due to human perturbations; not accounting for their interactions may further narrow the safe operating space for humanity. Using expert knowledge elicitation, we explored interactions among seven variables representing Earth system processes relevant to food production, identifying many interactions little explored in Earth system literature. We found that green water and land system change affect other Earth system processes strongly, while land, freshwater and ocean components of biosphere integrity are the most impacted by other Earth system processes, most notably blue water and biogeochemical flows. We also mapped a complex network of mechanisms mediating these interactions and created a future research prioritization scheme based on interaction strengths and existing knowledge gaps. Our study improves the understanding of Earth system interactions, with sustainability implications including improved Earth system modelling and more explicit biophysical limits for future food production

    Twenty-three unsolved problems in hydrology (UPH) – a community perspective

    Get PDF
    This paper is the outcome of a community initiative to identify major unsolved scientific problems in hydrology motivated by a need for stronger harmonisation of research efforts. The procedure involved a public consultation through on-line media, followed by two workshops through which a large number of potential science questions were collated, prioritised, and synthesised. In spite of the diversity of the participants (230 scientists in total), the process revealed much about community priorities and the state of our science: a preference for continuity in research questions rather than radical departures or redirections from past and current work. Questions remain focussed on process-based understanding of hydrological variability and causality at all space and time scales. Increased attention to environmental change drives a new emphasis on understanding how change propagates across interfaces within the hydrological system and across disciplinary boundaries. In particular, the expansion of the human footprint raises a new set of questions related to human interactions with nature and water cycle feedbacks in the context of complex water management problems. We hope that this reflection and synthesis of the 23 unsolved problems in hydrology will help guide research efforts for some years to come
    • 

    corecore