51 research outputs found

    Equatorial Pacific coral geochemical records show recent weakening of the Walker Circulation

    Get PDF
    Equatorial Pacific ocean-atmosphere interactions affect climate globally, and a key component of the coupled system is the Walker Circulation, which is driven by sea surface temperature (SST) gradients across the equatorial Pacific. There is conflicting evidence as to whether the SST gradient and Walker Circulation have strengthened or weakened over the late twentieth century. We present new records of SST and sea surface salinity (SSS) spanning 1959-2010 based on paired measurements of Sr/Ca and δ18O in a massive Porites coral from Butaritari atoll in the Gilbert Islands, Republic of Kiribati, in the central western equatorial Pacific. The records show 2-7 year variability correlated with the El Niño-Southern Oscillation (ENSO) and corresponding shifts in the extent of the Indo-Pacific Warm Pool, and decadal-scale signals related to the Pacific Decadal Oscillation and the Pacific Warm Pool Index. In addition, the Butaritari coral records reveal a small but significant increase in SST (0.39°C) from 1959 to 2010 with no accompanying change in SSS, a trend that persists even when ENSO variability is removed. In contrast, larger increases in SST and SSS are evident in coral records from the equatorial Pacific Line Islands, located east of Butaritari. Taken together, the equatorial Pacific coral records suggest an overall reduction in the east-west SST and SSS gradient over the last several decades, and a recent weakening of the Walker Circulation

    Endocytic profiling of cancer cell models reveals critical factors influencing lipid nanoparticle mediated mRNA delivery and protein expression

    Get PDF
    Lipid nanoparticles have great potential for delivering nucleic acid-based therapeutics, but low efficiency limits their broad clinical translation. Differences in transfection capacity between in vitro models used for nanoparticle pre-clinical testing is poorly understood. To address this, using a clinically relevant lipid nanoparticle (LNP) delivering mRNA we highlight specific endosomal characteristics in in vitro tumour models that impact on protein expression. A 30-cell line LNP-mRNA transfection screen identified three cells lines having low, medium and high transfection that correlated with protein expression when they were analysed in tumour models. Endocytic profiling of these cell lines identified major differences in endolysosomal morphology, localisation, endocytic uptake, trafficking, recycling, and endolysosomal pH, identified using a novel pH probe. High transfecting cells showed rapid LNP uptake and trafficking through an organised endocytic pathway to lysosomes or rapid exocytosis. Low transfecting cells demonstrated slower endosomal LNP trafficking to lysosomes, and defective endocytic organisation and acidification. Our data establishes that efficient LNP-mRNA transfection relies on an early and narrow endosomal escape window prior to lysosomal sequestration and/or exocytosis. Endocytic profiling should form an important pre-clinical evaluation step for nucleic acid delivery systems to inform model selection and guide delivery system design for improved clinical translation

    Lmx1b is required for the glutamatergic fates of a subset of spinal cord neurons

    Get PDF
    Background: Alterations in neurotransmitter phenotypes of specific neurons can cause imbalances in excitation and inhibition in the central nervous system (CNS), leading to diseases. Therefore, the correct specification and maintenance of neurotransmitter phenotypes is vital. As with other neuronal properties, neurotransmitter phenotypes are often specified and maintained by particular transcription factors. However, the specific molecular mechanisms and transcription factors that regulate neurotransmitter phenotypes remain largely unknown. Methods: In this paper we use single mutant, double mutant and transgenic zebrafish embryos to elucidate the functions of Lmx1ba and Lmx1bb in the regulation of spinal cord interneuron neurotransmitter phenotypes. Results: We demonstrate that lmx1ba and lmx1bb are both expressed in zebrafish spinal cord and that lmx1bb is expressed by both V0v cells and dI5 cells. Our functional analyses demonstrate that these transcription factors are not required for neurotransmitter fate specification at early stages of development, but that in embryos with at least two lmx1ba and/or lmx1bb mutant alleles there is a reduced number of excitatory (glutamatergic) spinal interneurons at later stages of development. In contrast, there is no change in the numbers of V0v or dI5 cells. These data suggest that lmx1b-expressing spinal neurons still form normally, but at least a subset of them lose, or do not form, their normal excitatory fates. As the reduction in glutamatergic cells is only seen at later stages of development, Lmx1b is probably required either for the maintenance of glutamatergic fates or to specify glutamatergic phenotypes of a subset of later forming neurons. Using double labeling experiments, we also show that at least some of the cells that lose their normal glutamatergic phenotype are V0v cells. Finally, we also establish that Evx1 and Evx2, two transcription factors that are required for V0v cells to acquire their excitatory neurotransmitter phenotype, are also required for lmx1ba and lmx1bb expression in these cells, suggesting that Lmx1ba and Lmx1bb act downstream of Evx1 and Evx2 in V0v cells. Conclusions: Lmx1ba and Lmx1bb function at least partially redundantly in the spinal cord and three functional lmx1b alleles are required in zebrafish for correct numbers of excitatory spinal interneurons at later developmental stages. Taken together, our data significantly enhance our understanding of how spinal cord neurotransmitter fates are regulated

    The inwardly rectifying K+ channel KIR7.1 controls uterine excitability throughout pregnancy

    Get PDF
    Abnormal uterine activity in pregnancy causes a range of important clinical disorders, including preterm birth, dysfunctional labour and post-partum haemorrhage. Uterine contractile patterns are controlled by the generation of complex electrical signals at the myometrial smooth muscle plasma membrane. To identify novel targets to treat conditions associated with uterine dysfunction, we undertook a genome-wide screen of potassium channels that are enriched in myometrial smooth muscle. Computational modelling identified Kir7.1 as potentially important in regulating uterine excitability during pregnancy. We demonstrate Kir7.1 current hyper-polarizes uterine myocytes and promotes quiescence during gestation. Labour is associated with a decline, but not loss, of Kir7.1 expression. Knockdown of Kir7.1 by lentiviral expression of miRNA was sufficient to increase uterine contractile force and duration significantly. Conversely, overexpression of Kir7.1 inhibited uterine contractility. Finally, we demonstrate that the Kir7.1 inhibitor VU590 as well as novel derivative compounds induces profound, long-lasting contractions in mouse and human myometrium; the activity of these inhibitors exceeds that of other uterotonic drugs. We conclude Kir7.1 regulates the transition from quiescence to contractions in the pregnant uterus and may be a target for therapies to control uterine contractility

    A tale of two towns: A comparative study exploring the possibilities and pitfalls of social capital among people seeking recovery from substance misuse

    Get PDF
    Background: Social capital has become an influential concept in debating and understanding the modern world. Within the drug and alcohol sector, the concept of ‘recovery capital’ has gained traction with researchers suggesting that people who have access to such capital are better placed to overcome their substance use-related problems than those who do not (Cloud and Granfield, 2008), leading to requests for interventions that focus on building social capital networks (Neale & Stevenson, 2015). While accepting that the concept of social capital has enormous potential for addressing the problems associated with drug use, this paper also considers its ‘dark side’. Methods: Data were drawn from semi-structured interviews with 180 participants including 135 people who use drugs and 45 people who formerly used drugs. Results: High levels of trust, acquired through the establishment of dense social networks, are required to initiate recovery. However, these ‘strong bonds’ may also lead to the emergence of what is perceived by others as an exclusive social network that limits membership to those who qualify and abide by the ‘rules’ of the recovery community, particularly around continuous abstinence. Conclusions: Depending on the nature of the networks and the types of links participants have into them being socially connected can both inhibit and encourage recovery. Therefore, the successful application of social capital within the drugs and alcohol field requires a consideration of not only the presence or absence of social connections but their nature, the value they produce, and the social contexts within which they are developed

    Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial

    Get PDF
    Background Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy

    Determinants of penetrance and variable expressivity in monogenic metabolic conditions across 77,184 exomes

    Get PDF
    Penetrance of variants in monogenic disease and clinical utility of common polygenic variation has not been well explored on a large-scale. Here, the authors use exome sequencing data from 77,184 individuals to generate penetrance estimates and assess the utility of polygenic variation in risk prediction of monogenic variants

    Whole-genome sequencing of chronic lymphocytic leukemia identifies subgroups with distinct biological and clinical features

    Get PDF
    The value of genome-wide over targeted driver analyses for predicting clinical outcomes of cancer patients is debated. Here, we report the whole-genome sequencing of 485 chronic lymphocytic leukemia patients enrolled in clinical trials as part of the United Kingdom's 100,000 Genomes Project. We identify an extended catalog of recurrent coding and noncoding genetic mutations that represents a source for future studies and provide the most complete high-resolution map of structural variants, copy number changes and global genome features including telomere length, mutational signatures and genomic complexity. We demonstrate the relationship of these features with clinical outcome and show that integration of 186 distinct recurrent genomic alterations defines five genomic subgroups that associate with response to therapy, refining conventional outcome prediction. While requiring independent validation, our findings highlight the potential of whole-genome sequencing to inform future risk stratification in chronic lymphocytic leukemia
    corecore