9 research outputs found

    Numerical Simulation of Vitiation Effects on a Hydrogen-Fueled Dual-Mode Scramjet

    Get PDF
    The Wind-US computational fluid dynamics (CFD) flow solver was used to simulate dual-mode direct-connect ramjet/scramjet engine flowpath tests conducted in the University of Virginia (UVa) Supersonic Combustion Facility (SCF). The objective was to develop a computational capability within Wind-US to aid current hypersonic research and provide insight to flow as well as chemistry details that are not resolved by instruments available. Computational results are compared with experimental data to validate the accuracy of the numerical modeling. These results include two fuel-off non-reacting and eight fuel-on reacting cases with different equivalence ratios, split between one set with a clean (non-vitiated) air supply and the other set with a vitiated air supply (12 percent H2O vapor). The Peters and Rogg hydrogen-air chemical kinetics model was selected for the scramjet simulations. A limited sensitivity study was done to investigate the choice of turbulence model and inviscid flux scheme and led to the selection of the k-epsilon model and Harten, Lax and van Leer (for contact waves) (HLLC) scheme for general use. Simulation results show reasonably good agreement with experimental data and the overall vitiation effects were captured

    Progress in Validation of Wind-US for Ramjet/Scramjet Combustion

    Get PDF
    Validation of the Wind-US flow solver against two sets of experimental data involving high-speed combustion is attempted. First, the well-known Burrows- Kurkov supersonic hydrogen-air combustion test case is simulated, and the sensitively of ignition location and combustion performance to key parameters is explored. Second, a numerical model is developed for simulation of an X-43B candidate, full-scale, JP-7-fueled, internal flowpath operating in ramjet mode. Numerical results using an ethylene-air chemical kinetics model are directly compared against previously existing pressure-distribution data along the entire flowpath, obtained in direct-connect testing conducted at NASA Langley Research Center. Comparison to derived quantities such as burn efficiency and thermal throat location are also made. Reasonable to excellent agreement with experimental data is demonstrated for key parameters in both simulation efforts. Additional Wind-US feature needed to improve simulation efforts are described herein, including maintaining stagnation conditions at inflow boundaries for multi-species flow. An open issue regarding the sensitivity of isolator unstart to key model parameters is briefly discussed

    Wind-US Code Physical Modeling Improvements to Complement Hypersonic Testing and Evaluation

    Get PDF
    This report gives an overview of physical modeling enhancements to the Wind-US flow solver which were made to improve the capabilities for simulation of hypersonic flows and the reliability of computations to complement hypersonic testing. The improvements include advanced turbulence models, a bypass transition model, a conjugate (or closely coupled to vehicle structure) conduction-convection heat transfer capability, and an upgraded high-speed combustion solver. A Mach 5 shock-wave boundary layer interaction problem is used to investigate the benefits of k- s and k-w based explicit algebraic stress turbulence models relative to linear two-equation models. The bypass transition model is validated using data from experiments for incompressible boundary layers and a Mach 7.9 cone flow. The conjugate heat transfer method is validated for a test case involving reacting H2-O2 rocket exhaust over cooled calorimeter panels. A dual-mode scramjet configuration is investigated using both a simplified 1-step kinetics mechanism and an 8-step mechanism. Additionally, variations in the turbulent Prandtl and Schmidt numbers are considered for this scramjet configuration

    Parametric Timing Analisys and Its Appication to Dynamic Voltage Scaling

    Full text link
    Embedded systems with real-time constraints depend on a priori knowledge of worst-case execution times (WCETs) to determine if tasks meet deadlines. Static timing analysis derives bounds on WCETs but requires statically known loop bounds. This work removes the constraint on known loop bounds through parametric analysis expressing WCETs as functions. Tighter WCETs are dynamically discovered to exploit slack by dynamic voltage scaling (DVS) saving 60% to 82% energy over DVS-oblivious techniques and showing savings close to more costly dynamic-priority DVS algorithms. Overall, parametric analysis expands the class of real-time applications to programs with loop-invariant dynamic loop bounds while retaining tight WCET bounds.This work was conducted at North Carolina State University and Florida State University; it was supported in part by NSF grants CCR-0208581, CCR-0310860, CCR-0312695, EIA-0072043, CCR-0208892, CCR-0312493 and CCR-0312531.Mohan, S.; Mueller, F.; Root, M.; Hawkins, W.; Healy, C.; Whalley, D.; Vivancos Rubio, E. (2011). Parametric Timing Analisys and Its Appication to Dynamic Voltage Scaling. ACM Transactions on Embedded Computing Systems. 10(2):1-34. doi:10.1145/1880050.1880061S13410

    2011 ACCF/AHA guideline for coronary artery bypass graft surgery: Executive summary

    No full text
    corecore