1,434 research outputs found

    The role of temperate bacteriophages in bacterial infection

    Get PDF
    Bacteriophages are viruses that infect bacteria. There are an estimated 1031 phage on the planet, making them the most abundant form of life. We are rapidly approaching the centenary of their identification, and yet still have only a limited understanding of their role in the ecology and evolution of bacterial populations. Temperate prophage carriage is often associated with increased bacterial virulence. The rise in use of technologies, such as genome sequencing and transcriptomics, has highlighted more subtle ways in which prophages contribute to pathogenicity. This review discusses the current knowledge of the multifaceted effects that phage can exert on their hosts and how this may contribute to bacterial adaptation during infection

    Lattice-matched epitaxial graphene grown on boron nitride

    Get PDF
    Lattice-matched graphene on hexagonal boron nitride is expected to lead to the formation of a band-gap but requires the formation of highly strained material and has not hitherto been realised. We demonstrate that aligned, lattice-matched graphene can be grown by molecular beam epitaxy using substrate temperatures in the range 1600-1710 °C and co-exists with a topologically-modified moiré pattern, and with regions of strained graphene which have giant moiré periods up to ~80 nm. Raman spectra reveal narrow red-shifted peaks due to isotropic strain, while the giant moiré patterns result in complex splitting of Raman peaks due to strain variations across the moiré unit cell. The lattice-matched graphene has a lower conductance than both the Frenkel-Kontorova-type domain walls, and also the topological defects where they terminate. We relate these results to theoretical models of band-gap formation in graphene/boron nitride heterostructures

    Large-scale genome-wide association studies and meta-analyses of longitudinal change in adult lung function.

    Get PDF
    BACKGROUND: Genome-wide association studies (GWAS) have identified numerous loci influencing cross-sectional lung function, but less is known about genes influencing longitudinal change in lung function. METHODS: We performed GWAS of the rate of change in forced expiratory volume in the first second (FEV1) in 14 longitudinal, population-based cohort studies comprising 27,249 adults of European ancestry using linear mixed effects model and combined cohort-specific results using fixed effect meta-analysis to identify novel genetic loci associated with longitudinal change in lung function. Gene expression analyses were subsequently performed for identified genetic loci. As a secondary aim, we estimated the mean rate of decline in FEV1 by smoking pattern, irrespective of genotypes, across these 14 studies using meta-analysis. RESULTS: The overall meta-analysis produced suggestive evidence for association at the novel IL16/STARD5/TMC3 locus on chromosome 15 (P  =  5.71 × 10(-7)). In addition, meta-analysis using the five cohorts with ≥3 FEV1 measurements per participant identified the novel ME3 locus on chromosome 11 (P  =  2.18 × 10(-8)) at genome-wide significance. Neither locus was associated with FEV1 decline in two additional cohort studies. We confirmed gene expression of IL16, STARD5, and ME3 in multiple lung tissues. Publicly available microarray data confirmed differential expression of all three genes in lung samples from COPD patients compared with controls. Irrespective of genotypes, the combined estimate for FEV1 decline was 26.9, 29.2 and 35.7 mL/year in never, former, and persistent smokers, respectively. CONCLUSIONS: In this large-scale GWAS, we identified two novel genetic loci in association with the rate of change in FEV1 that harbor candidate genes with biologically plausible functional links to lung function

    Temperate phages both mediate and drive adaptive evolution in pathogen biofilms

    Get PDF
    Temperate phages drive genomic diversification in bacterial pathogens. Phage-derived sequences are more common in pathogenic than non-pathogenic taxa, and are associated with changes in pathogen virulence. High abundance and mobilisation of temperate phages within hosts suggests that temperate phages could promote within-host evolution of bacterial pathogens. However,their role in pathogen evolution has not been experimentally tested. We experimentally evolved replicate populations of Pseudomonas aeruginosa with or without a community of three temperate phages active in cystic fibrosis (CF) lung infections, including the transposable phage, ɸ4, which is closely related to phage D3112. Populations grew as free-floating biofilms in artificial sputum medium, mimicking sputum of CF lungs where P. aeruginosa is an important pathogen and undergoes evolutionary adaptation and diversification during chronic infection. While bacterial populations adapted to the biofilm environment in both treatments, population genomic analysis revealed that phages altered both the trajectory and mode of evolution. Populations evolving with phages exhibited a greater degree of parallel evolution and faster selective sweeps than populations without phages. Phage ɸ4, integrated randomly into the bacterial chromosome but integrations into motility-associated genes and regulators of quorum sensing systems essential for virulence were selected in parallel, strongly suggesting that these insertional inactivation mutations were adaptive. Temperate phages, and in particular transposable phages, are therefore likely to facilitate adaptive evolution of bacterial pathogens within hosts

    Proteogenomics connects somatic mutations to signalling in breast cancer

    Get PDF
    Somatic mutations have been extensively characterized in breast cancer, but the effects of these genetic alterations on the proteomic landscape remain poorly understood. We describe quantitative mass spectrometry-based proteomic and phosphoproteomic analyses of 105 genomically annotated breast cancers of which 77 provided high-quality data. Integrated analyses allowed insights into the somatic cancer genome including the consequences of chromosomal loss, such as the 5q deletion characteristic of basal-like breast cancer. The 5q trans effects were interrogated against the Library of Integrated Network-based Cellular Signatures, thereby connecting CETN3 and SKP1 loss to elevated expression of EGFR, and SKP1 loss also to increased SRC. Global proteomic data confirmed a stromal-enriched group in addition to basal and luminal clusters and pathway analysis of the phosphoproteome identified a G Protein-coupled receptor cluster that was not readily identified at the mRNA level. Besides ERBB2, other amplicon-associated, highly phosphorylated kinases were identified, including CDK12, PAK1, PTK2, RIPK2 and TLK2. We demonstrate that proteogenomic analysis of breast cancer elucidates functional consequences of somatic mutations, narrows candidate nominations for driver genes within large deletions and amplified regions, and identifies therapeutic targets

    Multiple cardiovascular risk factor care in 55 low- and middle-income countries:A cross-sectional analysis of nationally-representative, individual-level data from 280,783 adults

    Get PDF
    The prevalence of multiple age-related cardiovascular disease (CVD) risk factors is high among individuals living in low- and middle-income countries. We described receipt of healthcare services for and management of hypertension and diabetes among individuals living with these conditions using individual-level data from 55 nationally representative population-based surveys (2009–2019) with measured blood pressure (BP) and diabetes biomarker. We restricted our analysis to non-pregnant individuals aged 40–69 years and defined three mutually exclusive groups (i.e., hypertension only, diabetes only, and both hypertension-diabetes) to compare individuals living with concurrent hypertension and diabetes to individuals with each condition separately. We included 90,086 individuals who lived with hypertension only, 11,975 with diabetes only, and 16,228 with hypertension-diabetes. We estimated the percentage of individuals who were aware of their diagnosis, used pharmacological therapy, or achieved appropriate hypertension and diabetes management. A greater percentage of individuals with hypertension-diabetes were fully diagnosed (64.1% [95% CI: 61.8–66.4]) than those with hypertension only (47.4% [45.3–49.6]) or diabetes only (46.7% [44.1–49.2]). Among the hypertension-diabetes group, pharmacological treatment was higher for individual conditions (38.3% [95% CI: 34.8–41.8] using antihypertensive and 42.3% [95% CI: 39.4–45.2] using glucose-lowering medications) than for both conditions jointly (24.6% [95% CI: 22.1–27.2]).The percentage of individuals achieving appropriate management was highest in the hypertension group (17.6% [16.4–18.8]), followed by diabetes (13.3% [10.7–15.8]) and hypertension-diabetes (6.6% [5.4–7.8]) groups. Although health systems in LMICs are reaching a larger share of individuals living with both hypertension and diabetes than those living with just one of these conditions, only seven percent achieved both BP and blood glucose treatment targets. Implementation of cost-effective population-level interventions that shift clinical care paradigm from disease-specific to comprehensive CVD care are urgently needed for all three groups, especially for those with multiple CVD risk factors

    Regulator of G-Protein Signaling 14 (RGS14) Is a Selective H-Ras Effector

    Get PDF
    Background: Regulator of G-protein signaling (RGS) proteins have been well-described as accelerators of Ga-mediated GTP hydrolysis (‘‘GTPase-accelerating proteins’’ or GAPs). However, RGS proteins with complex domain architectures are now known to regulate much more than Ga GTPase activity. RGS14 contains tandem Ras-binding domains that have been reported to bind to Rap- but not Ras GTPases in vitro, leading to the suggestion that RGS14 is a Rap-specific effector. However, more recent data from mammals and Drosophila imply that, in vivo, RGS14 may instead be an effector of Ras.Methodology/Principal Findings: Full-length and truncated forms of purified RGS14 protein were found to bind indiscriminately in vitro to both Rap- and Ras-family GTPases, consistent with prior literature reports. In stark contrast, however, we found that in a cellular context RGS14 selectively binds to activated H-Ras and not to Rap isoforms. Co- transfection / co-immunoprecipitation experiments demonstrated the ability of full-length RGS14 to assemble a multiprotein complex with components of the ERK MAPK pathway in a manner dependent on activated H-Ras. Small interfering RNA-mediated knockdown of RGS14 inhibited both nerve growth factor- and basic fibrobast growth factor- mediated neuronal differentiation of PC12 cells, a process which is known to be dependent on Ras-ERK signaling.Conclusions/Significance: In cells, RGS14 facilitates the formation of a selective Ras?GTP-Raf-MEK-ERK multiprotein complex to promote sustained ERK activation and regulate H-Ras-dependent neuritogenesis. This cellular function for RGS14 is similar but distinct from that recently described for its closely-related paralogue, RGS12, which shares the tandem Ras- binding domain architecture with RGS14

    Temperate phages enhance pathogen fitness in chronic lung infection

    Get PDF
    The Liverpool Epidemic Strain (LES) is a polylysogenic, transmissible strain of Pseudomonas aeruginosa, capable of superinfecting existing P. aeruginosa respiratory infections in individuals with cystic fibrosis (CF). The LES phages are highly active in the CF lung and may have a role in the competitiveness of the LES in vivo. In this study, we tested this by competing isogenic PAO1 strains that differed only by the presence or absence of LES prophages in a rat model of chronic lung infection. Lysogens invaded phage-susceptible populations, both in head-to-head competition and when invading from rare, in the spatially structured, heterogeneous lung environment. Appreciable densities of free phages in lung tissue confirmed active phage lysis in vivo. Moreover, we observed lysogenic conversion of the phage-susceptible competitor. These results suggest that temperate phages may have an important role in the competitiveness of the LES in chronic lung infection by acting as anti-competitor weapons

    Atypical Development of Attentional Control Associates with Later Adaptive Functioning, Autism and ADHD Traits

    Get PDF
    Funder: H2020 European Research Council; doi: http://dx.doi.org/10.13039/100010663Funder: Research Foundation FlandersFunder: Universiteit Gent; doi: http://dx.doi.org/10.13039/501100004385Funder: Marguerite-Marie DelacroixFunder: Autistica; doi: http://dx.doi.org/10.13039/100011706Funder: Riksbankens Jubileumsfond; doi: http://dx.doi.org/10.13039/501100004472; Grant(s): NHS14-1802:1Funder: K.F. Hein FondsFunder: Scott Family Junior Research FellowshipAbstract: Autism is frequently associated with difficulties with top-down attentional control, which impact on individuals’ mental health and quality of life. The developmental processes involved in these attentional difficulties are not well understood. Using a data-driven approach, 2 samples (N = 294 and 412) of infants at elevated and typical likelihood of autism were grouped according to profiles of parent report of attention at 10, 15 and 25 months. In contrast to the normative profile of increases in attentional control scores between infancy and toddlerhood, a minority (7–9%) showed plateauing attentional control scores between 10 and 25 months. Consistent with pre-registered hypotheses, plateaued growth of attentional control was associated with elevated autism and ADHD traits, and lower adaptive functioning at age 3 years
    corecore