1,338 research outputs found
Evaluation of a Vivo-Morpholino Delivery Method to the Brain and the Affect on Physical Activity
Evaluation of a Vivo-Morpholino Delivery Method to the Brain and the Affect on Physical Activity
*David P. Ferguson MS, Emily E. Schmitt MS, J. Timothy Lightfoot PhD FACSM
Biology of Physical Activity Lab, Texas A&M University, College Station, TX, 77843
*To be judged in the doctoral category
Physical inactivity has been shown to be correlated to various disease and conditions. Therefore, there is interest in the genetic mechanisms that control daily physical activity. Vivo-morpholinos are a new molecular biology tool that allows for the transient silencing of specific genes in an animal model, thereby allowing for a systematic method to turn off potential candidate genes involved in the regulation of physical activity. Vivo-morpholinos have not been shown to be effective at silencing genes in the brain due to the fact that the vivo-morpholino cannot cross the blood brain barrier. To counteract this, a tail vein injection (55 ul total volume; 11mg/kg vivo-morpholino; 6.5ug/kg RMP7) was given on three consecutive days containing the bradykinin analog RMP7 and a vivo-morpholino targeting Vmat2 to male C57/LJ mice (n=6). RMP7 has been shown to increase blood brain barrier permeability while Vmat2 is a dopamine transporter and is thought to be involved in the regulation of voluntary physical activity. Control animals received either RMP7 plus saline (n=6) or RMP7 plus a vivo-morpholino “scramble” control (n=6). Physical activity was measured by wheel running. Results showed there was not a significant (p=0.24) knockdown in Vmat2 in the brain with RMP7 administration as compared to control animals. Interestingly there was a significant (p=0.001) knockdown in daily physical activity in the Vmat2 treated animals compared to the control group. RMP7 may still be a viable option for vivo-morpholino delivery in the brain; however an increased dosage may be required
Co-Variation between Seed Dormancy, Growth Rate and Flowering Time Changes with Latitude in Arabidopsis thaliana
Life-history traits controlling the duration and timing of developmental phases in the life cycle jointly determine fitness. Therefore, life-history traits studied in isolation provide an incomplete view on the relevance of life-cycle variation for adaptation. In this study, we examine genetic variation in traits covering the major life history events of the annual species Arabidopsis thaliana: seed dormancy, vegetative growth rate and flowering time. In a sample of 112 genotypes collected throughout the European range of the species, both seed dormancy and flowering time follow a latitudinal gradient independent of the major population structure gradient. This finding confirms previous studies reporting the adaptive evolution of these two traits. Here, however, we further analyze patterns of co-variation among traits. We observe that co-variation between primary dormancy, vegetative growth rate and flowering time also follows a latitudinal cline. At higher latitudes, vegetative growth rate is positively correlated with primary dormancy and negatively with flowering time. In the South, this trend disappears. Patterns of trait co-variation change, presumably because major environmental gradients shift with latitude. This pattern appears unrelated to population structure, suggesting that changes in the coordinated evolution of major life history traits is adaptive. Our data suggest that A. thaliana provides a good model for the evolution of trade-offs and their genetic basis.<br
Comparison of Grouper assemblages in northern areas of the wider Caribbean: a preliminary assessment
The Atacama Cosmology Telescope: Two-Season ACTPol Spectra and Parameters
We present the temperature and polarization angular power spectra measured by
the Atacama Cosmology Telescope Polarimeter (ACTPol). We analyze night-time
data collected during 2013-14 using two detector arrays at 149 GHz, from 548
deg of sky on the celestial equator. We use these spectra, and the spectra
measured with the MBAC camera on ACT from 2008-10, in combination with Planck
and WMAP data to estimate cosmological parameters from the temperature,
polarization, and temperature-polarization cross-correlations. We find the new
ACTPol data to be consistent with the LCDM model. The ACTPol
temperature-polarization cross-spectrum now provides stronger constraints on
multiple parameters than the ACTPol temperature spectrum, including the baryon
density, the acoustic peak angular scale, and the derived Hubble constant.
Adding the new data to planck temperature data tightens the limits on damping
tail parameters, for example reducing the joint uncertainty on the number of
neutrino species and the primordial helium fraction by 20%.Comment: 23 pages, 25 figure
Recommended from our members
Heme oxygenase-1 regulates cell proliferation via carbon monoxide-mediated inhibition of T-type Ca2+ channels
Induction of the antioxidant enzyme heme oxygenase-1 (HO-1) affords cellular protection and suppresses proliferation of vascular smooth muscle cells (VSMCs) associated with a variety of pathological cardiovascular conditions including myocardial infarction and vascular injury. However, the underlying mechanisms are not fully understood. Over-expression of Cav3.2 T-type Ca2+ channels in HEK293 cells raised basal [Ca2+]i and increased proliferation as compared with non-transfected cells. Proliferation and [Ca2+]i levels were reduced to levels seen in non-transfected cells either by induction of HO-1 or exposure of cells to the HO-1 product, carbon monoxide (CO) (applied as the CO releasing molecule, CORM-3). In the aortic VSMC line A7r5, proliferation was also inhibited by induction of HO-1 or by exposure of cells to CO, and patch-clamp recordings indicated that CO inhibited T-type (as well as L-type) Ca2+ currents in these cells. Finally, in human saphenous vein smooth muscle cells, proliferation was reduced by T-type channel inhibition or by HO-1 induction or CO exposure. The effects of T-type channel blockade and HO-1 induction were non-additive. Collectively, these data indicate that HO-1 regulates proliferation via CO-mediated inhibition of T-type Ca2+ channels. This signalling pathway provides a novel means by which proliferation of VSMCs (and other cells) may be regulated therapeutically
The atacama cosmology telescope: lensing of CMB temperature and polarization derived from cosmic infrared background cross-correlation
We present a measurement of the gravitational lensing of the Cosmic Microwave Background (CMB) temperature and polarization fields obtained by cross-correlating the reconstructed convergence signal from the first season of Atacama Cosmology Telescope Polarimeter data at 146 GHz with Cosmic Infrared Background (CIB) fluctuations measured using the Planck satellite. Using an effective overlap area of 92.7 square degrees, we detect gravitational lensing of the CMB polarization by large-scale structure at a statistical significance of . Combining both CMB temperature and polarization data gives a lensing detection at significance. A B-mode polarization lensing signal is present with a significance of . We also present the first measurement of CMB lensing–CIB correlation at small scales corresponding to . Null tests and systematic checks show that our results are not significantly biased by astrophysical or instrumental systematic effects, including Galactic dust. Fitting our measurements to the best-fit lensing-CIB cross-power spectrum measured in Planck data, scaled by an amplitude A, gives (stat.) ± 0.06(syst.), consistent with the Planck results
The Sariçiçek Howardite Fall in Turkey: Source Crater of HED Meteorites on Vesta and İmpact Risk of Vestoids
The Sariçiçek howardite meteorite shower consisting of 343 documented stones
occurred on 2 September 2015 in Turkey and is the first documented howardite fall. Cosmogenic
isotopes show that Sariçiçek experienced a complex cosmic ray exposure history, exposed during
~12–14 Ma in a regolith near the surface of a parent asteroid, and that an ~1 m sized meteoroid
was launched by an impact 22 ± 2 Ma ago to Earth (as did one third of all HED meteorites). SIMS
dating of zircon and baddeleyite yielded 4550.4 ± 2.5 Ma and 4553 ± 8.8 Ma crystallization ages
for the basaltic magma clasts. The apatite U-Pb age of 4525 ± 17 Ma, K-Ar age of ~3.9 Ga, and
the U,Th-He ages of 1.8 ± 0.7 and 2.6 ± 0.3 Ga are interpreted to represent thermal metamorphic
and impact-related resetting ages, respectively. Petrographic, geochemical and O-, Cr- and Tiisotopic
studies confirm that Sariçiçek belongs to the normal clan of HED meteorites. Petrographic
observations and analysis of organic material indicate a small portion of carbonaceous chondrite
material in the Sariçiçek regolith and organic contamination of the meteorite after a few days on
soil. Video observations of the fall show an atmospheric entry at 17.3 ± 0.8 kms-1 from NW,
fragmentations at 37, 33, 31 and 27 km altitude, and provide a pre-atmospheric orbit that is the
first dynamical link between the normal HED meteorite clan and the inner Main Belt. Spectral data
indicate the similarity of Sariçiçek with the Vesta asteroid family (V-class) spectra, a group of
asteroids stretching to delivery resonances, which includes (4) Vesta. Dynamical modeling of
meteoroid delivery to Earth shows that the complete disruption of a ~1 km sized Vesta family
asteroid or a ~10 km sized impact crater on Vesta is required to provide sufficient meteoroids ≤4
m in size to account for the influx of meteorites from this HED clan. The 16.7 km diameter Antonia
impact crater on Vesta was formed on terrain of the same age as given by the 4He retention age of
Sariçiçek. Lunar scaling for crater production to crater counts of its ejecta blanket show it was
formed ~22 Ma ago
- …