20 research outputs found

    Consistent patterns of common species across tropical tree communities

    Get PDF
    Trees structure the Earth’s most biodiverse ecosystem, tropical forests. The vast number of tree species presents a formidable challenge to understanding these forests, including their response to environmental change, as very little is known about most tropical tree species. A focus on the common species may circumvent this challenge. Here we investigate abundance patterns of common tree species using inventory data on 1,003,805 trees with trunk diameters of at least 10 cm across 1,568 locations1,2,3,4,5,6 in closed-canopy, structurally intact old-growth tropical forests in Africa, Amazonia and Southeast Asia. We estimate that 2.2%, 2.2% and 2.3% of species comprise 50% of the tropical trees in these regions, respectively. Extrapolating across all closed-canopy tropical forests, we estimate that just 1,053 species comprise half of Earth’s 800 billion tropical trees with trunk diameters of at least 10 cm. Despite differing biogeographic, climatic and anthropogenic histories7, we find notably consistent patterns of common species and species abundance distributions across the continents. This suggests that fundamental mechanisms of tree community assembly may apply to all tropical forests. Resampling analyses show that the most common species are likely to belong to a manageable list of known species, enabling targeted efforts to understand their ecology. Although they do not detract from the importance of rare species, our results open new opportunities to understand the world’s most diverse forests, including modelling their response to environmental change, by focusing on the common species that constitute the majority of their trees.Publisher PDFPeer reviewe

    Understanding the spatial distribution of trichiasis and its association with trachomatous inflammation—follicular

    Get PDF
    Background Whilst previous work has identified clustering of the active trachoma sign “trachomatous inflammation—follicular” (TF), there is limited understanding of the spatial structure of trachomatous trichiasis (TT), the rarer, end-stage, blinding form of disease. Here we use community-level TF prevalence, information on access to water and sanitation, and large-scale environmental and socio-economic indicators to model the spatial variation in community-level TT prevalence in Benin, Cote d’Ivoire, DRC, Guinea, Ethiopia, Malawi, Mozambique, Nigeria, Sudan and Uganda. Methods We fit binomial mixed models, with community-level random effects, separately for each country. In countries where spatial correlation was detected through a semi-variogram diagnostic check we then fitted a geostatistical model to the TT prevalence data including TF prevalence as an explanatory variable. Results The estimated regression relationship between community-level TF and TT was significant in eight countries. We estimate that a 10% increase in community-level TF prevalence leads to an increase in the odds for TT ranging from 20 to 86% when accounting for additional covariates. Conclusion We find evidence of an association between TF and TT in some parts of Africa. However, our results also suggest the presence of additional, country-specific, spatial risk factors which modulate the variation in TT risk

    Clinical characteristics associated with mortality of COVID-19 patients admitted to an intensive care unit of a tertiary hospital in South Africa.

    No full text
    BackgroundOver 130 million people have been diagnosed with Coronavirus disease 2019 (COVID-19), and more than one million fatalities have been reported worldwide. South Africa is unique in having a quadruple disease burden of type 2 diabetes, hypertension, human immunodeficiency virus (HIV) and tuberculosis, making COVID-19-related mortality of particular interest in the country. The aim of this study was to investigate the clinical characteristics and associated mortality of COVID-19 patients admitted to an intensive care unit (ICU) in a South African setting.Methods and findingsWe performed a prospective observational study of patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection admitted to the ICU of a South African tertiary hospital in Cape Town. The mortality and discharge rates were the primary outcomes. Demographic, clinical and laboratory data were analysed, and multivariable robust Poisson regression model was used to identify risk factors for mortality. Furthermore, Cox proportional hazards regression model was performed to assess the association between time to death and the predictor variables. Factors associated with death (time to death) at p-value ConclusionsIn this study, the mortality rate in COVID-19 patients admitted to the ICU was high. Older age, the need for invasive mechanical ventilation, HIV status, and metabolic acidosis were found to be significant predictors of mortality in patients admitted to the ICU

    Dynamics of braided coronal loops: II. Cascade to multiple small-scale reconnection events

    No full text
    Aims. Our aim is to investigate the resistive relaxation of a magnetic loop that contains braided magnetic flux but no net current or helicity. The loop is subject to line-tied boundary conditions. We investigate the dynamical processes that occur during this relaxation, in particular the magnetic reconnection that occurs, and discuss the nature of the final equilibrium. Methods. The three-dimensional evolution of a braided magnetic field is followed in a series of resistive MHD simulations. Results. It is found that, following an instability within the loop, a myriad of thin current layers forms, via a cascade-like process. This cascade becomes more developed and continues for a longer period of time for higher magnetic Reynolds number. During the cascade, magnetic flux is reconnected multiple times, with the level of this “multiple reconnection” positively correlated with the magnetic Reynolds number. Eventually the system evolves into a state with no more small-scale current layers. This final state is found to approximate a non-linear force-free field consisting of two flux tubes of oppositely-signed twist embedded in a uniform background field

    Contributors

    No full text

    First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data

    No full text
    International audienceSpinning neutron stars asymmetric with respect to their rotation axis are potential sources of continuous gravitational waves for ground-based interferometric detectors. In the case of known pulsars a fully coherent search, based on matched filtering, which uses the position and rotational parameters obtained from electromagnetic observations, can be carried out. Matched filtering maximizes the signal-to-noise (SNR) ratio, but a large sensitivity loss is expected in case of even a very small mismatch between the assumed and the true signal parameters. For this reason, narrow-band analysis methods have been developed, allowing a fully coherent search for gravitational waves from known pulsars over a fraction of a hertz and several spin-down values. In this paper we describe a narrow-band search of 11 pulsars using data from Advanced LIGO’s first observing run. Although we have found several initial outliers, further studies show no significant evidence for the presence of a gravitational wave signal. Finally, we have placed upper limits on the signal strain amplitude lower than the spin-down limit for 5 of the 11 targets over the bands searched; in the case of J1813-1749 the spin-down limit has been beaten for the first time. For an additional 3 targets, the median upper limit across the search bands is below the spin-down limit. This is the most sensitive narrow-band search for continuous gravitational waves carried out so far

    Consistent patterns of common species across tropical tree communities

    No full text
    Trees structure the Earth’s most biodiverse ecosystem, tropical forests. The vast number of tree species presents a formidable challenge to understanding these forests, including their response to environmental change, as very little is known about most tropical tree species. A focus on the common species may circumvent this challenge. Here we investigate abundance patterns of common tree species using inventory data on 1,003,805 trees with trunk diameters of at least 10 cm across 1,568 locations1–6 in closed-canopy, structurally intact old-growth tropical forests in Africa, Amazonia and Southeast Asia. We estimate that 2.2%, 2.2% and 2.3% of species comprise 50% of the tropical trees in these regions, respectively. Extrapolating across all closed-canopy tropical forests, we estimate that just 1,053 species comprise half of Earth’s 800 billion tropical trees with trunk diameters of at least 10 cm. Despite differing biogeographic, climatic and anthropogenic histories7, we find notably consistent patterns of common species and species abundance distributions across the continents. This suggests that fundamental mechanisms of tree community assembly may apply to all tropical forests. Resampling analyses show that the most common species are likely to belong to a manageable list of known species, enabling targeted efforts to understand their ecology. Although they do not detract from the importance of rare species, our results open new opportunities to understand the world’s most diverse forests, including modelling their response to environmental change, by focusing on the common species that constitute the majority of their trees

    Consistent patterns of common species across tropical tree communities

    No full text
    International audienceAbstract Trees structure the Earth’s most biodiverse ecosystem, tropical forests. The vast number of tree species presents a formidable challenge to understanding these forests, including their response to environmental change, as very little is known about most tropical tree species. A focus on the common species may circumvent this challenge. Here we investigate abundance patterns of common tree species using inventory data on 1,003,805 trees with trunk diameters of at least 10 cm across 1,568 locations 1–6 in closed-canopy, structurally intact old-growth tropical forests in Africa, Amazonia and Southeast Asia. We estimate that 2.2%, 2.2% and 2.3% of species comprise 50% of the tropical trees in these regions, respectively. Extrapolating across all closed-canopy tropical forests, we estimate that just 1,053 species comprise half of Earth’s 800 billion tropical trees with trunk diameters of at least 10 cm. Despite differing biogeographic, climatic and anthropogenic histories 7 , we find notably consistent patterns of common species and species abundance distributions across the continents. This suggests that fundamental mechanisms of tree community assembly may apply to all tropical forests. Resampling analyses show that the most common species are likely to belong to a manageable list of known species, enabling targeted efforts to understand their ecology. Although they do not detract from the importance of rare species, our results open new opportunities to understand the world’s most diverse forests, including modelling their response to environmental change, by focusing on the common species that constitute the majority of their trees
    corecore