13 research outputs found

    The State of Adaptation in the United States: An Overview

    Get PDF
    Over the past two decades the adaptation landscape has changed dramatically. From its early days as a vague theoretical concept, which was often viewed as a threat to advocating for the reduction of greenhouse gas emissions, it has developed into a widely, albeit not universally, recognized governmental mandate to reduce societal vulnerability to climate change. While it is important to appreciate the progress that we are making on this issue, it is impossible to ignore the urgent need to do more. Smart investment can be made by reflecting on what is already underway in order to determine where to build on existing efforts and where to innovate new approaches to fill the gaps in the path forward. In this report we provide illustrative examples of the variety of work on climate change adaptation that is underway in the United States. This is by no means an exhaustive survey of the field; however it does provide insight into the dominant focus of work to date, the resultant gaps, and the opportunities available for advancing this essential aspect of sustainability. We focus on four areas of activity -- agriculture, natural resources, human communities, and policy. The general trends relevant to these sectors can be applied more broadly to other sectors and countries. Adaptation can be thought of as a cycle of activities that ultimately -- if successful -- reduces vulnerability to climate change. This process starts with identifying the impacts of climate change to determine the types of problems climate change might pose. This includes all of the research on the causes and the global, regional, and local manifestations of climate change, often referred to as impacts assessments

    Earthquakes: from chemical alteration to mechanical rupture

    Full text link
    In the standard rebound theory of earthquakes, elastic deformation energy is progressively stored in the crust until a threshold is reached at which it is suddenly released in an earthquake. We review three important paradoxes, the strain paradox, the stress paradox and the heat flow paradox, that are difficult to account for in this picture, either individually or when taken together. Resolutions of these paradoxes usually call for additional assumptions on the nature of the rupture process (such as novel modes of deformations and ruptures) prior to and/or during an earthquake, on the nature of the fault and on the effect of trapped fluids within the crust at seismogenic depths. We review the evidence for the essential importance of water and its interaction with the modes of deformations. Water is usually seen to have mainly the mechanical effect of decreasing the normal lithostatic stress in the fault core on one hand and to weaken rock materials via hydrolytic weakening and stress corrosion on the other hand. We also review the evidences that water plays a major role in the alteration of minerals subjected to finite strains into other structures in out-of-equilibrium conditions. This suggests novel exciting routes to understand what is an earthquake, that requires to develop a truly multidisciplinary approach involving mineral chemistry, geology, rupture mechanics and statistical physics.Comment: 44 pages, 1 figures, submitted to Physics Report

    Principles of human geography

    No full text
    xv, 805 p.; 23 cm
    corecore