In the standard rebound theory of earthquakes, elastic deformation energy is
progressively stored in the crust until a threshold is reached at which it is
suddenly released in an earthquake. We review three important paradoxes, the
strain paradox, the stress paradox and the heat flow paradox, that are
difficult to account for in this picture, either individually or when taken
together. Resolutions of these paradoxes usually call for additional
assumptions on the nature of the rupture process (such as novel modes of
deformations and ruptures) prior to and/or during an earthquake, on the nature
of the fault and on the effect of trapped fluids within the crust at
seismogenic depths. We review the evidence for the essential importance of
water and its interaction with the modes of deformations. Water is usually seen
to have mainly the mechanical effect of decreasing the normal lithostatic
stress in the fault core on one hand and to weaken rock materials via
hydrolytic weakening and stress corrosion on the other hand. We also review the
evidences that water plays a major role in the alteration of minerals subjected
to finite strains into other structures in out-of-equilibrium conditions. This
suggests novel exciting routes to understand what is an earthquake, that
requires to develop a truly multidisciplinary approach involving mineral
chemistry, geology, rupture mechanics and statistical physics.Comment: 44 pages, 1 figures, submitted to Physics Report